SUPPORTING INFORMATION

Piperazine-Modified Ammonium Polyphosphate as Monocomponent Flame-Retardant Hardener for Epoxy Resin: Flame Retardance, Curing Behavior and Mechanical Property

Yi Tan, Zhu-Bao Shao, Lei-Xiao Yu, Jia-Wei Long, Min Qi, Li Chen,* and Yu-Zhong Wang*

Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China. E-mail: l.chen.scu@gmail.com (L Chen), yzwang@scu.edu.cn (YZ Wang); Fax: +86-28-85410755 **Figure S1.** XPS spectra (N_{1s}) of PAz-APP.

Figure S2. FTIR spectra of APP and PAz-APP.

Figure S3. ¹H and ¹³C-NMR spectra of APP, PAz and PAz-APP, for comparison, physical

mixture of PAz and APP (PAz+APP) was also recorded.

Table S1. Elemental contents of APP and PAz-APP.

Table S2. The corresponding structures of each binding energy in XPS testing.

Figure S1. XPS spectra (N_{1s}) of PAz-APP.

There were three binding energy peaks appeared in this spectrum, meaning the existence of three different nitrogen chemical structures in PAz-APP. The binding energy at 401.5 eV corresponded to NH_4^+ . The characteristic binding energy of new formed $-NH_2^+$ group was located at 400.6 eV. The peak at 399.0 eV was ascribed to the -NH- group, unambiguously indicated the existing of secondary amino structure in modified APP.

Figure S2. FTIR spectra of APP and PAz-APP.

In the FTIR spectra, compared with APP, the new weak peaks at 2630.9 and 2818.4 cm⁻¹ of PAz-APP were ascribed to the vibration of $-NH_2^+$ and $-CH_2^-$, respectively. This means that the piperazine salt (R-NH₂⁺), instead of ammonium salt (NH₄⁺), was formed after modification reaction between PAz and APP.

Figure S3. ¹H and ¹³C-NMR spectra of APP, PAz and PAz-APP, for comparison, physical mixture of PAz and APP (PAz+APP) was also recorded.

To further confirm the chemical structure of functional PAz-APP, ¹H and ¹³C-NMR were conducted. For comparison, both the APP, PAz, PAz-APP and physical mixture of PAz and APP (PAz+APP) were tested. These shifts extensively indicated the successful cation exchange reaction between PAz-APP and PAz.

	C (%)	N (%)	Н (%)	P (%)
II-APP	0.1	13.0	4.2	28.9
PAz-APP	11.5	12.5	5.5	23.3

Table S1. Elemental contents of APP and PAz-APP.

After cation exchange reaction with PAz, the corresponding elemental contents in PAz-APP all changed more or less. Particularly, the content of C greatly increased from 0.1 % to 11.5 %. Conversely, the P content in PAz-APP was obviously decreased from 28.9 % to 23.3 %. Both predicting results remarkably demonstrated the successful reaction between PAz and APP.

binding energy (eV) the corresponding structure organic or innorganic phosphates 132.9 133.7 P-O-P 133.9 phosphorus oxides the further crosslinking of phosphoric acid 134.3 phosphorus oxides 135.0 C-H, C-C in aliphatic and aromatic groups 284.5 C=C 285.2 C-O-C, C-OH, or C-N 286.2 C-O-C, C-OH, or C-N 286.6 397.0 nitrogrn oxides -N= group in a cyclic structure 398.3 -C=NH or N-C groups (pyridinic N in initial resin) 398.9 399.0 -NH-399.6 tertiary amino groups 399.7 P-N-P 400.6 $R-NH_2^+$ 401.4 NH_4^+

Table S2. The corresponding structures of each binding energy in XPS testing.

530.6	oxides in the residue
531.6	O=P, O=C
532.0	-OH
532.5	the ether bonds
532.8	C-0
533.1	Р-О-Р, С-О-Р
534.3	C-0
538.6	C-0