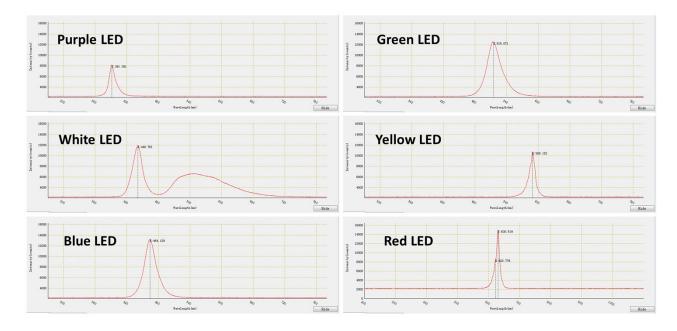
Supplementary Information

For

Catalyst-free Iodine-Mediated Living Radical Polymerization under Irradiation over a Wide Visible-Light Spectral Scope


Xiaodong Liu, Lifen Zhang,* Zhenping Cheng* and Xiulin Zhu

Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

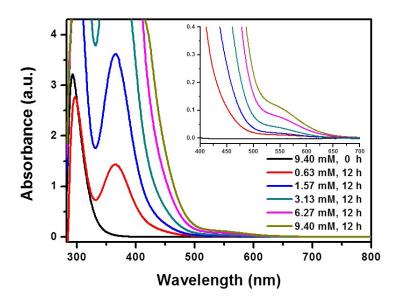

Entry	Light source	[M] ₀ /[I] ₀	Solvent	Solvent volume	Time (h)	Conv. ^b (%)	M _{n,th} ^c (g/mol)	M _{n,GPC} ^d (g/mol)	$M_{ m w}/M_{ m n}{}^d$
1	White LED	100/1	DMSO	1.0	9	51.3	5330	4800	1.20
2	Green LED	100/1	DMSO	1.0	15	74.7	7670	8360	1.13
3	Green LED	100/1	DMAC	0.2	12	47.9	4990	5100	1.12
4	Green LED	100/1	DMAC	0.5	12	58.6	6060	6560	1.12
5	Green LED	100/1	DMAC	1.0	12	64.6	6660	6690	1.10
6	Green LED	100/1	DMAC	1.5	12	57.5	5950	6450	1.14
7	Green LED	100/1	DMAC	2.0	12	57.0	5900	5970	1.17
8	Green LED	600/1	DMAC	1.0	52	47.6	28790	40220	1.07
9	Green LED	800/1	DMAC	1.0	68	44.8	36080	43690	1.09
10	White LED	600/1	DMSO	1.0	20	52.5	31730	55850	1.26
11	White LED	800/1	DMAC	1.0	20	46.5	37440	61250	1.34

 Table S1. Photo-induced catalyst-free LRP of MMA under white or green LED irradiation.^a

^{*a*}Reaction conditions: $[MMA]_0$: $[CP-I]_0 = 100:1$, 600:1 or 800:1, $V_{MMA} = 1.0$ mL, at room temperature irradiation by LED light. ^{*b*}Determined by gravimetry. ^{*c*}Calculated based on monomer conversion, $M_{n,th} = M_{CP-I} + [MMA]_0/[CP-I]_0 \times M_{MMA} \times \text{conversion}\%)$. ^{*d*}Determined by GPC in THF, based on linear PMMA as calibration standards.

Fig. S1 Emission spectra of LEDs. The peaks are 390 ± 30 nm for the purple LED, 464 ± 40 nm for the blue LED, 515 ± 40 nm for the green LED, 590 ± 20 nm for the yellow LED and 630 ± 30 nm for the red LED with the breadths of the distribution are given by half of the full width at half maximum. The emission wavelength for the white LED was 400-720 nm, λ_{max} = 440, 540 nm. The emission intensities changes with the variation of distance of the light source to the inductive sensor.

Fig. S2 UV-Vis absorption spectra of polymerization systems in DMAC before and after polymerization under red LED irradiation for 12h; the polymerization systems were diluted with DMAC and calculated by original initiator concentration before measurement.