Supporting information for

N-Ester-substituted polyacrylamides with tunable lower critical solution temperature (LCST): the N-ester-substitutes dependent thermoresponse

Shengli Chen, Yuan Zhang, Ke Wang, Heng Zhou, and Wangqing Zhang*a,b

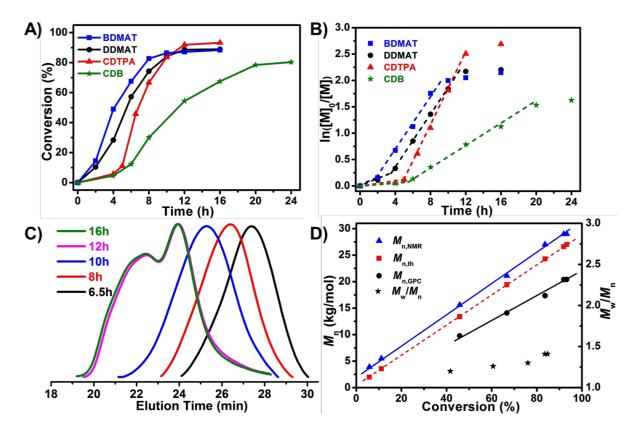
^aKey Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

Scheme S1 The RAFT agents of DDMAT, BDMAT, CDTPA and CDB.

$$M_{\text{n,th}} = \frac{[\text{monomer}]_0 \times M_{\text{monomer}}}{[\text{RAFT}]_0} \times \text{Conversion} + M_{\text{RAFT}} \text{ (S1)}$$

Note: in eq S1 [monomer]₀ and [RAFT]₀ represent the concentration of the fed monomer and the RAFT agent, the Conversion is determined by ^{1}H NMR analysis by comparing the integral areas of the monomer protons of C=C- ^{2}H at $\delta = 5.81$ ppm with those of the 1,3,5-trioxane internal standard at $\delta = 5.10$ ppm, and M_{monomer} and M_{RAFT} are the molar mass of the monomer and the RAFT agent.



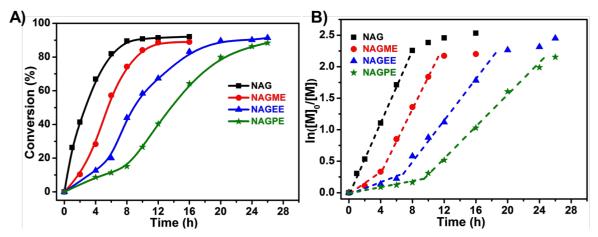


Fig. S1 Kinetics of solution RAFT polymerization of NAGME: the plots of dependent monomer conversion (A) and the ln([M]₀/[M])-time plots of the RAFT polymerization (B) using BDMAT, DDMAT, CDTPA and CDB as the RAFT agents, respectively; the GPC traces (C), the evolution of the molecular weight and the $D(M_w/M_n)$ value of PNAGME with the monomer conversion (D) using CDTPA as the RAFT agent. Conditions: **NAGME** (1.43)g, 10.00 mmol, 33.3 wt% in 1,4-dioxane), $[NAGME]_0:[RAFT]_0:[AIBN]_0 = 600:3:1, 70 \, ^{\circ}C.$

Fig. S2 The ¹H NMR spectra of the four samples of PNAGME synthesized using DDMAT, CDTPA, BDMAT and CDB as the RAFT agents.

Fig. S3 Kinetics of solution RAFT polymerization of four *N*-ester substituted acrylamides NAG, NAGME NAGEE and NAGPE, respectively. The plots of time-dependent monomer conversion (A) and the $ln([M]_0/[M])$ -time plots of the RAFT polymerization (B). Conditions: For all of the polymerization, the monomer concentration was fixed at 3.64 mol/L, [Monomer]₀:[RAFT]₀:[AIBN]₀ = 600:3:1, 70 °C.

Table S1 The table showing the solubility of four monomers in common solvents at $20\,^{\circ}$ C (approx. 293.15 K) and a pressure of one atm.

Monomer	Water	MeOH	EtOH	CH ₂ Cl ₂	CHCl ₃	Dioxane	DMF
NAG	S ^a	S	S	s^b	S	S	S
NAGME	S	S	S	S	S	S	S
NAGEE	S	S	S	S	S	S	S
NAGPE	S	S	S	S	S	S	S

^a S represents solubility > 10 mg/mL; ^b s represents solubility locates 1– 10 mg/mL.

Table S2 Summary of the photographs of the PNAG solution (c=1.0 wt%) with various pH from 1 to 10 at 25 °C and 90 °C, respectively, showing the polymer did not possess phase transition behavior.

pН	1	4	7	10
25 °C	pH = 1	pH = 4	PH = 7	PH=10
90 °C	pH = 1	PH = 4	PH = 7	PH=10