Supporting Information

for

Functionalisation of MWCNTs with poly(lauryl acrylate) polymerised by Cu(0)-mediated and RAFT methods

Jaipal Gupta,^a Daniel J. Keddie,^b Chaoying Wan,^a David M. Haddleton,^c and Tony McNally,^{a*}

^aInternational Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, CV4 7AL, UK. ^bSchool of Biology, Chemistry and Forensic Science, University of Wolverhampton, WV1

1LY, UK.

^cDepartment of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK.

Email: <u>T.McNally@warwick.ac.uk</u>

Supplementary Figures

Fig. S1 ¹H NMR spectrum of cyanomethyl dodecyltrithiocarbonate recorded in CDCl₃.

Fig. S2 ¹H NMR spectrum of P[LA] synthesised *via* RAFT using cyanomethyl dodecyltrithiocarbonate RAFT agent.

Fig S3. ¹H NMR spectra of P[LA] recorded in CDCl₃ synthesised *via* Cu(0)-mediated polymerisation.

Fig. S6 NMR of P[LA] synthesised *via* RAFT ($M_{n, SEC} = 2.5 \text{ kDa}, \mathcal{D} = 1.13$) before and after thermal treatment at 200 °C under an air atmosphere as a function of time.

Fig. S7 NMR of P[LA] synthesised *via* Cu(0)-mediated polymerisation ($M_{n, SEC} = 2.1$ kDa, $\mathcal{P} = 1.11$) before and after thermal treatment at 200 °C under an air atmosphere as a function of time.