Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Ring-opening Polymerization of ε-Caprolactone and L-Lactide by Using Aluminum Complexes Bearing Benzothiazole Ligands as Catalysts

Yen-Tzu Huang,^{*a*} Wei-Chu Wang,^{*a*} Chun-Pin Hsu,^{*a*} Wei-Yi Lu,^{*a*} Wan-Jung Chuang,^{*a*} Michael Y. Chiang,^{*ab*} Yi-Chun Lai,^{*a*} Hsuan-Ying Chen*^{*a*}

^a Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, R.O.C. ^b Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, R.O.C.

Table of Contents

Table S1 Kinetic study of CL polymerization with various Al complexes in toluene
10 mL, [CL] = 1.0 M
Table S2 Kinetic study of LA polymerization with various Al complexes in toluene
10 mL, [LA] = 1.0 M at 80 °C
Figure S1-S26 ¹ H and ¹³ C NMR spectra of ligands and associated Al complexes .8-20
Figure S27 ¹ H NMR spectrum of PCL (Table 1, entry 18)21
Figure S28 ¹ H NMR spectrum of PLA (Table 2, entry 18)21

	$LAIMe_3 L =$							
time	HPh	Hfur	HBr	HTh	HMe	H2OMe	0	S
min	Conv.(%)							·
5			0.08					
10			0.2		0.39		0.28	
15	0.3	0.14	0.3		0.45	0.03		0.3
20				0.27	0.5		0.51	
25					0.55			
30	0.54	0.32	0.58			0.14	0.66	0.47
40				0.53	0.7	0.2	0.74	
45	0.69	0.44						0.57
50			0.81				0.85	
55				0.7		0.27		
60	0.8	0.53						
65				0.78				
70	0.85					0.42		
75		0.64		0.84				0.82
90		0.72		0.89				
100				0.93				
120								0.90
$k_{obs} x$		4.51	3.52	2.91	2.37	0.67 (3)	1.85	3.77
10-2/	2 79	(13)	(13)	(10)	(11)		(4)	(23)
min ⁻¹	(2)							
(error)	(2)							
I.P/	2.40	2.9	3.88	12.13	9.95	10.18	0 (0)	1.54
	(49)	(48)				(243)		

Table S1 Kinetic study of CL polymerization with various Al complexes in toluene

10 mL, [CL] = 1.0 M at room temperature	e ([CL]:[Cat]:[BnOH]=100:1:3)
---	-------------------------------

(error)		(252)	(117)		(202)

	LAIMe ₃ L =					
time	H ^{NO2}	HNO2 ^a	HNO2 ^b	HNO2 ^c	CINO2	
min			Conv.(%)		
3			0.23	0.29		
5		0.19				
6			0.42	0.48		
9			0.60	0.65		
10	0.26	0.40			0.38	
12			0.7	0.76		
15		0.57	0.78	0.85		
20	0.51	0.74	0.86		0.71	
25		0.80				
30	0.7	0.85			0.86	
35					0.90	
40					0.92	
45	0.85					
50	0.9					
k _{obs} ×10 ⁻² /min ⁻¹		6.99	10.15	12.43	6.95	
(error)	4.90 (22)	(31)	(24)	(46)	(28)	
I.P/ min (error)	4.83 (158)	2.19 (87)	0	1.43 (36)	3.86 (117)	

^a[CL]:[Cat]:[BnOH]=100:2:6, [CL]=1.0 M, toluene 10 mL

^b[CL]:[Cat]:[BnOH]=100:3:9, [CL]=1.0 M, toluene 10 mL

°[CL]:[Cat]:[BnOH]=100:4:12, [CL]=1.0 M, toluene 10 mL

time	L ^{4-OMe} AIMe ₃	L ^{4-OMe} AlEt ₃	L ^{4-OMe} AlBu ₃			
min	Conv.(%)					
3		0.08				
6		0.22				
9		0.35				
10			0.58			
12		0.49				
15	0.18	0.60				
20			0.72			
30	0.37		0.9			
40	0.51		0.95			
55	0.61					
70	0.75					
$k_{obs} \times 10^{-2} / min^{-1}$	2.12	6.97	7.41			
(error)	(14)	(36)	(81)			
I.P/ min	7.07(299)	2.20	0			
(error)		(51)				

	$LAIMe_3 L =$							
time	HPh	Hfur	HBr	HTh	HMe	H2OMe	0	S
min	Conv.(%)							
10							0.18	0.26
15	04	0.30	0.27	0.50	0.26	0.20		
20							0.36	0.51
30	0.57	0.64	0.54	0.70	0.58	0.49	0.47	0.72
40	0.69		0.71	0.81	0.7		0.67	0.85
45		0.78				0.64		
50	0.78		0.81	0.86	0.75		0.78	0.91
60	0.85	0.88	0.86	0.91		0.76		
65					0.86			
70	0.88					0.81		
75					0.90			
80	0.92	0.93						
k _{obs} x		3.55	3.79	3.80	3.26	2.42	3.53	5.39
10-2/	3 41	(17)	(16)	(12)	(11)	(13)	(31)	(19)
min ⁻¹	(7)							
(error)	(')							
I.P/			7.58	3.21	4.81	3.84	5.63	5.57
min	5.89	2.74	(181)	(35)	(183)	(276)	(297)	(121)
(error)	(119)	(254)		(55)			(2) ()	

Table S2 Kinetic study of LA polymerization with various Al complexes in toluene10 mL, [LA] = 1.0 M at 80 °C ([LA]:[Cat]:[BnOH]=100:1:3)

	LAIMe ₃ L =					
time	HNO2	HNO2 ^a	HNO2 ^b	HNO2 ^c	CINO2	
min	Conv.(%)					
3			0.20	0.24		
6				0.39		
9		0.20		0.49		
10					0.13	
12		0.30	0.49	0.56		
15	0.42	0.37	0.56	0.65		
20		0.46	0.68		0.32	
25		0.80				
30	0.65	0.64	0.82		0.47	
35						
40	0.71	0.75	0.89		0.67	
45						
50	0.78	0.86			0.78	
60	0.83					
65						
70						
75						
80						
k _{obs} ×10 ⁻² /min ⁻¹	2.02	3.73	5.47	6.26	3.47	
(error)	3.02 (11)	(11)	(10)	(24)	(29)	
I.P/ min		2.83	0	0	8.21	
(error)	0	(55)				

^a[CL]:[Cat]:[BnOH]=100:2:6, [LA]=1.0 M, toluene 10 mL ^b[CL]:[Cat]:[BnOH]=100:3:9, [LA]=1.0 M, toluene 10 mL ^c[CL]:[Cat]:[BnOH]=100:4:12, [LA]=1.0 M, toluene 10 mL

time	L ^{4-OMe} AlMe ₃	L ^{4-OMe} AlEt ₃	L ^{4-OMe} AlBu ₃			
min	Conv.(%)					
10			0.05			
15	0.19	0.30				
20			0.16			
30	0.43	0.64	0.26			
40		0.78	0.32			
45	0.65					
50		0.87	0.41			
55						
60	0.77					
70	0.82	0.93				
80			0.65			
110			0.77			
k _{obs} ×10 ⁻² /min ⁻¹	2.80	4.15	1.44			
(error)	(7)	(13)	(5)			
I.P/ min	8.24	5.47	9.67			
(error)	(1.36)	(139)	(210)			

Figure S1 ¹H NMR spectrum of L^{HPh}AlMe₃ in CDCl₃

Figure S3 ¹H NMR spectrum of L^{HBr}AlMe₃ in CDCl₃

Figure S6 ¹³C NMR spectrum of $L^{HMe}AlMe_3$ in CDCl₃

Figure S7 ¹H NMR spectrum of $L^{H4OMe}AlMe_3$ in CDCl₃

Figure S8 ¹³C NMR spectrum of L^{H4OMe}AlMe₃ in CDCl₃

Figure S9 ¹H NMR spectrum of $L^{H2OMe}AlMe_3$ in CDCl₃

Figure S10 ¹³C NMR spectrum of L^{H2OMe}AlMe₃ in CDCl₃

Figure S11 ¹H NMR spectrum of L^{HNO2}AlMe₃ in CDCl₃

Figure S12 ¹³C NMR spectrum of L^{HNO2}AlMe₃ in CDCl₃

Figure S13 ¹H NMR spectrum of L^{CINO2}AlMe₃ in CDCl₃

Figure S14 ¹³C NMR spectrum of $L^{CINO2}AIMe_3$ in CDCl₃

Figure S15 ¹H NMR spectrum of L^{H4OMe}AlEt₃ in CDCl₃

Figure S16 ¹³C NMR spectrum of L^{H4OMe}AlEt₃ in CDCl₃

Figure S17 ¹H NMR spectrum of L^{H4OMe}AlBu₃ in CDCl₃

Figure S18 ¹³C NMR spectrum of L^{H4OMe}AlBu₃ in CDCl₃

Figure S20 ¹³C NMR spectrum of L^{HFu}AlMe₃ in CDCl₃

C

Figure S22 13 C NMR spectrum of L^{HTh}AlMe₃ in CDCl₃

1

Figure S23 ¹H NMR spectrum of L⁰AlMe₃ in CDCl₃

Figure S25 ¹H NMR spectrum of L^SAlMe₃ in CDCl₃

Figure S27 ¹H NMR spectrum of PCL (Table 1, entry 18)

Figure S28 ¹H NMR spectrum of PLA (Table 2, entry 18)