Blood compatibility of heparin-inspired, lactose containing, polyureas depends on the chemistry of the polymer backbone

Yongshun Huang,^{*a*} Mary R. Warmin,^a Maureen A. Shaw,^{*b*} Eric S. Mullins,^{*b*} and Neil

Ayres^{a*}

^a: Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221

^b: Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229

*Corresponding author:

(N. Ayres) Email: ayresni@ucmail.uc.edu. Tel: (513) 556-9280. Fax: (513) 556-9239.

Part S1: Synthesis and spectra of poly(TDI-sL) from L-D and TDI	S3
Part S2: Synthesis and spectra of poly(IPDI-sL) from L-D and IPDI	S12
Part S3: Synthesis and spectra of poly(HMDI-sL) from L-D and HMDI	S22
Part S4: Synthesis and spectra of poly(HDI-sL) from L-D and HDI	S32
Part S5: Differential scanning calorimetry of the synthesized polymers	S33
Part S6: Contact angles of the synthesized polymers	S35
Part S7: Elemental analysis of the sulfated polymers	S36
Part S8: Original data of activated Partial Thromboplastin Time (aPTT) results	S37
Part S9: Original data of Prothrombin Time (PT) results	S39
Part S10: Original data of Thrombin Time (PT) results	S41
Part S11: IC ₅₀ values of the sulfated polymers	S43
References	S44

Table of Contents

Part S1: Synthesis and spectra of poly(TDI-sL) from L-D and TDI

The detailed synthesis procedures are listed in the manuscript.

Synthesis of **poly(TDI-pL)**:

¹**H NMR (CDCl₃, 400 MHz):** δ (ppm) 7.03 (m, 3 H, =C*H*), 5.34 (s, 2 H, *d*-H), 5.17 (m, 2 H, *c*'-H), 5.09 (t, *J* = 8.0 Hz, 2 H, *b*-H), 4.98 (m, 2 H, *c*-H), 4.89 (m, 2 H, *b*'-H), 4.51 (m, 6 H, *a*-H, *a*'-H, *f*'-H_a), 4.12–4.07 (m, 6 H, *f*-H, *g*-H_a), 3.90–3.45 (m, 18 H, *e*-H, *g*-H_b, *d*'-H, *e*'-H, *f*'-H_b, *h*-H, *1*-H), 2.15, 2.04, 1.96 (3 × s, 45 H, 15 × CH₃)

¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.19 (CH₃*C*=O), 170.02 (CH₃*C*=O), 169.90 (CH₃*C*=O), 169.56 (CH₃*C*=O), 168.98 (CH₃*C*=O), 156.41 (C-2, C-10), 137.37 (C-3, C-4, C-7), 130.10 (C-5), 117.04, 116.40 (C-6, C-8), 100.89 (C-a, C-a'), 76.11 (C-d), 72.76 (C-b), 71.30 (C-c'), 70.84 (C-c), 70.45 (C-b'), 69.01 (C-e'), 66.55 (C-e), 65.69 (C-d'), 61.92 (C-f), 60.64 (C-f'), 53.55 (C-g), 48.66 (C-1, C-h), 20.67, 20.52 (CH₃C=O), 17.47 (C-9)

FT-IR: (cm⁻¹) 2940, 1743, 1661, 1531, 1427, 1367, 1213, 1040, 900

GPC data: number average molecular weight (Mn): 10.8 kDa; weight average molecular weight (Mw): 27.1 kDa; polydispersity (*Đ*): 2.51

Contact Angle: Static: 47°; Advancing: 53°; Receding: 35°

Synthesis of **poly(TDI-L**):

¹**H NMR (D₂O, 400 MHz):** δ (ppm) 7.03 (m, 3 H, =C*H*), 4.39–3.32 (m, 4 H, *d*-H, *c*'-H), 3.82–3.47 (m, 36 H, *a*-H, *b*-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *l*-H), 2.07 (s, 3 H, 9-H)

DEPT-135 (D₂O, 100 MHz): δ (ppm) 130.58 (C-5), 102.84 (C-*a*), 102.37 (C-*a'*), 78.28 (C-*d*), 75.20 (C-*b*), 74.59 (C-*c'*), 74.37 (C-*c*), 72.70 (C-*b'*), 72.48 (C-*e'*), 70.77 (C-*e*), 68.42 (C-*d'*), 60.86 (C-*f*), 60.01 (C-*f'*), 16.73 (C-9)

¹³C NMR (D₂O, 100 MHz): δ (ppm) 158.84 (C-2, C-10), 136.27 (C-3, C-4, C-7), 130.55 (C-5), 119.70,119.07 (C-6, C-8), 102.87 (C-*a*), 102.37 (C-*a*'), 78.34 (C-*d*), 75.22 (C-*b*), 74.61 (C-*c*'), 74.40 (C-*c*), 72.71 (C-*b*'), 72.51 (C-*e*'), 70.79 (C-*e*), 68.45 (C-*d*'), 60.88 (C-*f*), 60.04 (C-*f*'), 47.43,45.78 (C-1, C-*h*), 16.75 (C-9)

FT-IR: (cm⁻¹) 3311, 2881, 1639, 1526, 1494, 1372, 1236, 1020

Contact Angle: Static: 42°; Advancing: 51°; Receding: 24°

Synthesis of **poly(TDI-sL**):

¹**H NMR (D₂O, 400 MHz):** δ (ppm) 8.82–7.12 (m, 3 H, =C*H*), 5.19 (s, 2 H, *d*-H), 5.05– 5.00 (m, 2 H, *c*'-H), 4.89 (m, 2 H, *b*-H), 4.49–3.46 (m, 34 H, *a*-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *l*-H), 2.33 (s, 3 H, 9-H)

¹³C NMR (D₂O, 100 MHz): δ (ppm) 157.21 (C-2, C-10), 145.21 (C-3, C-4, C-7), 128.19 (C-5), 101.09, 100.83 (C-*a*), 100.28 (C-*a*'), 78.02, 77.84, 77.66 (C-*d*), 77.25 (C-*b*), 75.88, 75.70 (C-*c*'), 75.27 (C-*c*), 74.97 (C-*b*'), 73.27 (C-*e*'), 73.09 (C-*e*), 72.00 (C-*d*'), 69.12 (C-*g*), 66.89, 66.66, 66.16 (C-*f*), 65.08 (C-*f*'), 47.33, 46.50, 46.24 (C-*h*, C-1), 16.72 (C-9) **FT-IR:** (cm⁻¹) 3481, 1634, 1220, 999, 931, 799

Figure S01. ¹H NMR spectrum for poly(TDI-pL)

Figure S02. ¹³C NMR spectrum for poly(TDI-pL)

Figure S03. FT-IR spectrum for poly(TDI-pL)

Figure S04. ¹H NMR spectrum for poly(TDI-L)

Figure S06. ¹³C NMR spectrum for poly(TDI-L)

Figure S08. ¹H NMR spectrum for poly(TDI-sL)

Figure S09. ¹³C NMR spectrum for poly(TDI-sL)

Figure S10. FT-IR spectrum for poly(TDI-sL)

Part S2: Synthesis and spectra of poly(IPDI-sL) from L-D and IPDI

Synthesis of **poly(IPDI-pL)**:

L-D (2.90 g, 1.0 equiv.) was added into a flame-dried flask. After evacuating and refilling with nitrogen three times, 10 mL of anhydrous DMF was injected under nitrogen protection followed by isophorone diisocyanate (**IPDI**) (0.489 g, 1.05 equiv.). This solution was stirred at 65 °C for 40 h before removing the DMF. The residue was dissolved in a minimum amount of DCM and precipitated out from cold ether three times. The solvent was removed under vacuum to yield 3.26 g product as a white powder in 95 % yield

¹**H NMR (CDCl₃, 400 MHz):** *δ* (ppm) 5.35 (s, 2 H, *d*-H), 5.18 (m, 2 H, *c*'-H), 5.10 (t, *J* = 8.0 Hz, 2 H, *b*-H), 4.98–4.96 (m, 2 H, *c*-H), 4.86 (m, 2 H, *b*'-H), 4.51 (m, 6 H, *a*-H, *a*'-H, *f*'-H_a), 4.12–4.09 (m, 6 H, *f*-H, *g*-H_a), 3.90 (m, 4 H, *e*-H, *f*'-H_b), 3.80 (m, 2 H, *d*'-H), 3.64 (m, 4 H, *g*-H_b, *e*'-H), 3.40–3.11 (m, 11 H, *h*-H, *I*-H, *3*-H, *II*-H), 2.15, 2.12, 2.05, 2.01, 1.97 (6 × s, 42 H, 14 × CH₃), 1.69 (m, 2 H, *8*-H), 1.06–0.93 (m, 13 H, *4*-H, *6*-H, *9*-H, *I0*-H)

¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.00 (CH₃*C*=O), 169.85 (CH₃*C*=O), 169.72 (CH₃*C*=O), 169.37 (CH₃*C*=O), 168.79 (CH₃*C*=O), 158.60, 157.82 (C-2, C-12), 100.71 (C-*a*, C-*a'*), 75.99 (C-*d*), 72.55 (C-*b*), 71.23 (C-*c'*), 70.68 (C-*c*), 70.32 (C-*b'*), 68.85 (C-

e'), 66.40 (C-*e*), 65.51 (C-*d'*), 61.70 (C-*f*), 60.53 (C-*f'*), 48.24, 48.02, 47.40, 46.85, 45.72, 43.93 (C-*1*, C-*3*, C-*11*, C-*h*), 35.04, 31.62 (C-*4*, C-*5*, C-*6*, C-*7*, C-*8*), 27.51 (C-*9*), 22.99 (C-*10*), 20.36 (*C*H₃C=O) **FT-IR:** (cm⁻¹) 1743, 1634, 1531, 1366, 1212, 1039, 900

GPC data: Mn: 12.3 kDa; Mw: 15.2 kDa; *Đ*: 1.24

Contact Angle: Static: 57°; Advancing: 64°; Receding: 43°

Synthesis of **poly(IPDI-L**):

In a flame-dried flask, **poly(IPDI-pL)** (3.00 g) was dissolved in 40 mL anhydrous methanol, followed by adding catalytic amount of MeONa/MeOH solution. This solution was stirred at room temperature (r.t.) for 2.5 h with the formation of precipitation. The solvent was poured into a beaker. MeOH was used to wash the precipitate and combined with the original solvent. Dowex 50WX8 hydrogen form resin was added into the solvent to adjust pH around 6.0. After filtration to remove the Dowex 50WX8 resin, the solvent was removed to yield the product. This product is combined with the precipitate to obtain 1.85 g product in 96 % yield

¹H NMR (**D**₂**O**, 400 MHz): δ (ppm) 4.40 (m, 4 H, *d*-H, *c*'-H), 3.88–3.52 (m, 39 H, *a*-H,

b-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *1*-H, *3*-H, *11*-H), 1.58 (m, 2 H, 8-H), 1.01–0.91 (m, 13 H, 4-H, 6-H, 9-H, 10-H)

DEPT-135 (D₂O, 100 MHz): δ (ppm) 102.91 (C-*a*), 102.33 (C-*a*'), 78.40 (C-*d*), 75.27 (C-*b*), 74.70 (C-*c*'), 74.44 (C-*c*), 72.78 (C-*b*'), 72.51 (C-*e*'), 70.85 (C-*e*), 68.47 (C-*d*'), 60.92 (C-*f*), 60.10 (C-*f*")

¹³C NMR (D₂O, 100 MHz): δ (ppm) 159.80, 159.03 (C-2, C-12), 102.95 (C-*a*), 102.36 (C-*a*'), 78.46 (C-*d*), 75.30 (C-*b*), 74.73 (C-*c*'), 74.48 (C-*c*), 72.81 (C-*b*'), 72.55 (C-*e*'), 70.89 (C-*e*), 68.50 (C-*d*'), 60.95 (C-*f*), 60.14 (C-*f*'), 47.49, 46.81, 46.36 (C-*h*, C-1, C-11), 44.27 (C-3), 36.50, 35.30, 31.59 (C-4, C-5, C-6, C-7, C-8), 27.77 (C-9), 23.26 (C-10) **FT-IR:** (cm⁻¹) 3328, 2890, 1622, 1532, 1365, 1245, 1021

Contact Angle: Static: 41°; Advancing: 51°; Receding: 25°

Synthesis of **poly(IPDI-sL)**:

Poly(IPDI-L) (0.82 g, 1.0 equiv.) and SO₃/pyridine complex (5.22 g, 42.0 equiv.) was added into a flame-dried flask. After evacuating and refilling with nitrogen for three times, 15 mL anhydrous pyridine was injected. It was heated at 90 °C for 24 h. After the solvent was removed, saturated NaHCO₃ solution was added to adjust the pH to 8.0 and the

polymer was isolated through dialysis and lyophilization to give white foam product. Yield = 1.84 g, 95 %

¹H NMR (**D**₂**O**, 400 MHz): δ (ppm) 5.23 (s, 2 H, *d*-H), 4.99–4.93 (m, 4 H, *c*'-H, *b*-H), 4.67–3.62 (m, 37 H, *a*-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *l*-H, *3*-H, *ll*-H), 1.76 (m, 2 H, 8-H), 1.19–1.10 (m, 13 H, 4-H, 6-H, 9-H, 10-H)

¹³C NMR (D₂O, 100 MHz): δ (ppm) 160.04, 159.03 (C-2, C-12), 101.00 (C-a), 100.77 (C-a'), 77.77 (C-b, C-d), 77.30 (C-c'), 75.84 (C-c), 75.60 (C-b'), 75.23 (C-e, C-e'), 73.19 (C-d'), 71.89 (C-g), 68.29 (C-f), 66.60 (C-f'), 46.91, 45.99 (C-h, C-1, C-11), 44.54 (C-3), 36.64, 34.79, 31.48 (C-4, C-5, C-6, C-7, C-8), 27.20 (C-9), 22.91 (C-10)

FT-IR: (cm⁻¹) 3480, 2953, 1630, 1538, 1221, 999

Figure S11. ¹H NMR spectrum for poly(IPDI-pL)

Figure S12. ¹³C NMR spectrum for poly(IPDI-pL)

Figure S13. FT-IR spectrum for poly(IPDI-pL)

Figure S14. ¹H NMR spectrum for poly(IPDI-L)

Figure S16. ¹³C NMR spectrum for poly(IPDI-L)

Figure S17. FT-IR spectrum for poly(IPDI-L)

Figure S18. ¹H NMR spectrum for poly(IPDI-sL)

Figure S19. ¹³C NMR spectrum for poly(IPDI-sL)

Figure S20. FT-IR spectrum for poly(IPDI-sL)

Part S3: Synthesis and spectra of poly(HMDI-sL) from L-D and HMDI

Synthesis of **poly(HMDI-pL)**:

L-D (2.870 g, 1.0 equiv.) was added into a flame-dried flask. After evacuating and refilling with nitrogen for three times, 10 mL anhydrous DMF was injected under nitrogen protection, followed by 4,4'-methylenebis(cyclohexyl isocyanate) (**HMDI**) (0.634 g, 1.05 equiv., 90 % purity). This solution was stirred at 65 °C for 40 h before removing the DMF. The residue was dissolved in a minimum amount of DCM, and precipitated out from cold ether three times. The solvent was removed under vacuum to yield 3.320 g product as a white powder in 96 % yield

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 5.35 (s, 2 H, *d*-H), 5.18 (m, 2 H, *c*'-H), 5.10 (t, J = 8.0 Hz, 2 H, *b*-H), 4.98–4.95 (m, 2 H, *c*-H), 4.86 (m, 2 H, *b*'-H), 4.50 (m, 6 H, *a*-H, *a*'-H, f'-H_a), 4.13–4.04 (m, 6 H, *f*-H, *g*-H_a), 3.89 (m, 4 H, *e*-H, *f*'-H_b), 3.81–3.77 (m, 2 H, *d*'-H), 3.64 (m, 4 H, *g*-H_b, *e*'-H), 3.44–3.11 (m, 10 H, *h*-H, *1*-H, *3*-H, *11*-H), 2.15, 2.12, 2.06, 2.05, 2.01, 1.97 (6 × s, 42 H, 14 × CH₃), 1.73–1.54, 1.27–0.97 (m, 20 H, *4*-H, *5*-H, *6*-H, 7-H, 8-H, 9-H, *10*-H)

¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 170.08 (CH₃*C*=O), 169.91 (CH₃*C*=O), 169.80 (CH₃*C*=O), 169.44 (CH₃*C*=O), 168.84 (CH₃*C*=O), 157.76 (C-2, C-*12*), 100.77 (C-*a*), 100.49 (C-*a*'), 75.97 (C-*d*), 72.66 (C-*b*), 71.20 (C-*c*'), 70.71 (C-*c*), 70.38 (C-*b*'), 68.90

(C-*e*'), 66.42 (C-*e*), 65.58 (C-*d*'), 61.77 (C-*f*), 60.56 (C-*f*'), 50.02 (C-*g*), 48.18, 46.90, 46.64, 45.77 (C-*1*, C-*3*, C-*11*, C-*h*), 33.61, 33.17, 32.15, 31.94, 29.54, 27.93, 27.33 (C-*4*, C-5, C-6, C-7, C-8, C-9, C-*10*), 20.59, 20.42 (*C*H₃C=O) **FT-IR:** (cm⁻¹) 2927, 1742, 1634, 1526, 1366, 1212, 1038, 890 **GPC data:** Mn: 11.0 kDa; Mw: 15.6 kDa; PDI: 1.42 **Contact Angle:** Static: 56°; Advancing: 60°; Receding: 45°

Synthesis of **poly(HMDI-L)**:

In a flame-dried flask, **poly(HMDI-pL)** (3.10 g) was dissolved in 40 mL anhydrous methanol, followed by adding catalytic amount of MeONa/MeOH solution. This solution was stirred at r.t. for 2.5 h with the formation of precipitation. The solvent was poured into a beaker. MeOH was used to wash the precipitate and combined with the original solvent. Dowex 50WX8 hydrogen form resin was added into the solvent to adjust pH around 6.0. After filtration to remove the Dowex 50WX8 resin, the solvent was removed to yield the product. This product was combined with the precipitate to get 1.93 g product in 96 % yield

¹H NMR (**D**₂**O**, 400 MHz): δ (ppm) 4.42 (m, 4 H, *d*-H, *c*'-H), 3.90–3.54 (m, 38 H, *a*-H,

b-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *1*-H, *3*-H, *11*-H), 1.83–0.90 (br, 20 H, *4*-H, *5*-H, *6*-H, *7*-H, *8*-H, *9*-H, *10*-H)

DEPT-135 (D₂O, 100 MHz): δ (ppm) 102.96 (C-*a*), 102.39 (C-*a*'), 78.52 (C-*d*), 75.30 (C-*b*), 74.74 (C-*c*'), 74.48 (C-*c*), 72.80 (C-*b*'), 72.53 (C-*e*'), 70.87 (C-*e*), 68.47 (C-*d*'), 60.93 (C-*f*), 60.16 (C-*f*')

¹³C NMR (D₂O, 100 MHz): δ (ppm) 158.84 (C-2, C-12), 102.99 (C-a), 102.43 (C-a'), 78.57 (C-d), 75.33 (C-b), 74.76 (C-c'), 74.53 (C-c), 72.85 (C-b'), 72.56 (C-e'), 70.90 (C-e), 68.50 (C-d'), 60.96 (C-f), 60.22 (C-f'), 47.61, 46.68 (C-1, C-3, C-11, C-h), 33.78, 33.40, 32.21, 31.70, 29.84, 29.14, 28.71 (C-4, C-5, C-6, C-7, C-8, C-9, C-10)
FT-IR: (cm⁻¹) 3330, 2918, 1615, 1530, 1447, 1406, 1367, 1249, 1023

Contact Angle: Static: 47°; Advancing: 53°; Receding: 32°

Synthesis of **poly(HMDI-sL)**:

Poly(HMDI-L) (0.80 g, 1.0 equiv.) and SO₃/pyridine complex (4.91 g, 42.0 equiv.) was added into a flame-dried flask. After evacuating and refilling with nitrogen for three times, 15 mL anhydrous pyridine was injected. It was heated at 90 °C for 24 h. After the solvent was removed, saturated NaHCO₃ solution was added to adjust the pH to 8.0 and the

polymer was isolated through dialysis and lyophilization to give white foam product. Yield = 1.71 g, 92 %

¹H NMR (**D**₂**O**, 400 MHz): δ (ppm) 5.19 (s, 2 H, *d*-H), 4.96–4.88 (m, 4 H, *c*'-H, *b*-H), 4.62–3.55 (m, 36 H, *a*-H, *c*-H, *e*-H, *f*-H, *g*-H, *h*-H, *a*'-H, *b*'-H, *d*'-H, *e*'-H, *f*'-H, *l*-H, *3*-H, *ll*-H), 1.97–1.02 (m, 20 H, *4*-H, *5*-H, *6*-H, 7-H, *8*-H, *9*-H, *10*-H)

¹³C NMR (D₂O, 100 MHz): δ (ppm) 159.08 (C-2, C-12), 101.03 (C-a), 100.71, 99.91 (C-a'), 77.66 (C-b, C-d), 77.25 (C-c'), 75.82 (C-c), 75.54 (C-b'), 75.21 (C-e, C-e'), 73.31 (C-d'), 71.89 (C-g), 68.14 (C-f), 66.55 (C-f'), 50.77, 47.27, 46.76, 46.12 (C-h, C-1, C-3, C-11), 33.02, 32.16, 29.92, 29.58, 29.09, 28.19 (C-4, C-5, C-6, C-7, C-8, C-9, C-10) FT-IR: (cm⁻¹) 3486, 2925, 1630, 1537, 1225, 1053, 1006

Figure S21. ¹H NMR spectrum for poly(HMDI-pL)

Figure S22. ¹³C NMR spectrum for poly(HMDI-pL)

Figure S23. FT-IR spectrum for poly(HMDI-pL)

Figure S24. ¹H NMR spectrum for poly(HMDI-L)

Figure S25. DEPT-135 spectrum for poly(HMDI-L)

Figure S26. ¹³C NMR spectrum for poly(HMDI-L)

Figure S27. FT-IR spectrum for poly(HMDI-L)

Figure S28. ¹H NMR spectrum for poly(HMDI-sL)

Figure S29. ¹³C NMR spectrum for poly(HMDI-sL)

Figure S30. FT-IR spectrum for poly(HMDI-sL)

Part S4: Synthesis and spectra of poly(HDI-sL) from L-D and HDI

The detailed synthesis procedures, as well as the spectra, can be found from our previous reported publication.¹

Part S5: Differential scanning calorimetry of the synthesized polymers

A NETZSCH DSC 200 F3 Maia® was utilized to measure the thermal phase transitions of the deprotected and sulfated polymers by subjecting to two heating and cooling cycles with a cooling rate of 5 °C/min and a heating rate of 10 °C/min under N₂ atmosphere. The polymers were first cooled to -20 °C and heated to 100 °C. Then, it was cooled back to 25 °C and heated to 200 °C. The second heating/cooling cycle was used to identify the glass transition temperature (T_g), which was taken as the midpoint of the stepwise change in the heat flow signal.

The glass transition temperatures (T_g) of the deprotected and sulfated polymers were measured using differential scanning calorimetry (DSC). The data from the second heating cycle were used to obtain glass transition temperatures to avoid artifacts due to initial thermal treatment.² The measured glass transition temperatures are summarized in Table S1. As expected, the deprotected polymers containing HDI has the lowest T_g with a value of 68 °C for poly(HDI-L). The lower T_g values can be attributed to the flexible molecular structure of HDI segment.^{3, 4} The more rigid HMDI, TDI and IPDI containing polymers have higher T_g values at 84, 87, and 93 °C, for poly(HMDI-pL), poly(TDI-pL), and poly(IPDI-pL), respectively. Interestingly, only HDI-containing poly(HDI-sL) was found with an observable T_g values of 97 °C; values far above those used in the blood compatibility assays. No T_g values were recorded for the other sulfated polymers before the onset of decomposition.

Table S1. Glass transition temperature (T_g) of the deprotected and sulfated polymers. The absence of a value (-) reflects that no T_g was observed in the measurement.

Polymer	<i>T</i> _g (°C)	Polymer	<i>T</i> _g (°C)
poly(TDI-L)	87	poly(TDI-sL)	-
poly(IPDI-L)	93	poly(IPDI-sL)	-

poly(HMDI-L)	84	poly(HMDI-sL)	-
poly(HDI-L)	68	poly(HDI-sL)	97

Part S6: Contact angle of the synthesized polymers

Contact angles were determined with a Ramé-hart contact angle goniometer (Model 200-F1). DCM or methanol solutions of the synthesized polymers were cast onto a polished Si wafer and dried overnight to produce solvent-cast thin films. Ten microliters of distilled water was placed onto the polymer surface using a micropipette. Contact angles were calculated with a tangent method using the software supplied with the goniometer. Each sample was measured at least three times with different drops of water and the averaged data are reported. The advancing and receding contact angles were recorded by tilting the base to 35°.

Polymer	$\boldsymbol{\theta}_{(\mathrm{static})}$	${m heta}_{(ext{Receding})}$	Ө [°] (Advancing)
poly(TDI-pL)	47	35	53
poly(TDI-L)	42	24	51
poly(IPDI-pL)	57	43	64
poly(IPDI-L)	41	25	51
poly(HMDI-pL)	56	45	60
poly(HMDI-L)	47	32	53
poly(HDI-pL)	43	31	49
poly(HDI-L)	30	20	45

Table S2. Contact angle measurements of the synthesized polymers.

Part S7: Elemental analysis of the sulfated polymers

Polymer	Carbon	Hydrogen	Nitrogen	Sodium	Sulfur	DS ^a
poly(TDI-sL)	15.80%	2.89%	1.59%	11.57%	17.13%	7.92
poly(IPDI-sL)	18.97%	3.54%	2.22%	10.85%	14.51%	6.02
poly(HMDI-sL)	21.86%	3.71%	2.35%	10.46%	15.44%	5.97
poly(HDI-sL)	18.08%	3.44%	2.36%	10.27%	15.42%	6.88

Table S3. Elemental analysis of the sulfated polymers with different diisocyanates.

^a: DS = average degree of sulfation per disaccharide unit.

Table S4. Sulfation of poly(HMDI-L) with different equivalents of the sulfation reagent and the measured degree of sulfation by elemental analysis. (The numbers after the polymer name, i.e. 0.57, 1.60, 3.20, 4.44 and 5.97, represent the degree of sulfation of these sulfated polymers).

Polymer	SO ₃ ·pyr. ^{<i>a</i>}	Carbon	Hydrogen	Nitrogen	Sulfur	DS ^c
poly(HMDI-sL)-0.57	2.0	43.82%	6.80%	5.04%	2.95%	0.57
poly(HMDI-sL)-1.60	6.0	28.75%	4.77%	3.22%	5.44%	1.60
poly(HMDI-sL)-3.20	8.0	22.99%	4.01%	2.59%	8.72%	3.20
poly(HMDI-sL)-4.44	10.0	21.00%	3.69%	2.34%	11.04%	4.44
poly(HMDI-sL)-5.97	3.0^{b}	21.86%	3.71%	2.35%	15.44%	5.97

^a: equivalents of sulfation reagent per lactose unit in DMF solution used in the reaction for 24 hours at room temperature;

^b: equivalents of sulfation reagent per hydroxyl group in pyridine solution used in the reaction for 24 hours at 90 °C;

c: average degree of sulfation per lactose unit.

Part S8: O	Original d	data o	of activated	Partial	Thromboplastin	Time	of	the	sulfated
glycopolym	iers								

Concentration	Poly(H	DI-sL)	Average	Poly(HI	MDI-sL)	Average
0.5 mg/mL	>300	>300	>300	>300	>300	>300
50 μg/mL	153.0	136.0	144.5	>300	>300	>300
5.0 μg/mL	40.0	39.0	39.5	49.0	48.0	48.5
0.5 μg/mL	27.0	27.0	27.0	31.0	31.0	31.0
Concentration	Poly(T	DI-sL)	Average	Poly(II	PDI-sL)	Average
Concentration 0.5 mg/mL	Poly(T >300	DI-sL)	Average >300	Poly(II >300	PDI-sL) >300	Average >300
Concentration 0.5 mg/mL 50 µg/mL	Poly(T >300 104.0	DI-sL) >300 104.0	Average >300 104.0	Poly(II >300 145.0	PDI-sL) >300 195.0	Average >300 170.0
Concentration 0.5 mg/mL 50 μg/mL 5.0 μg/mL	Poly(T >300 104.0 46.0	DI-sL) >300 104.0 46.0	Average >300 104.0 46.0	Poly(II >300 145.0 48.0	PDI-sL) >300 195.0 48.0	Average >300 170.0 48.0

Table S5. aPTT (s) results of glycopolymers from L-D and different diisocyanates

Table S6. aPTT (s) results of poly(HMDI-sL) with different degrees of sulfate

Concentration	Poly(HMI	DI-sL)-0.57	Average	Poly(HMI	DI-sL)-1.60	Average
0.5 mg/mL	34.0	33.0	33.5	>300	>300	>300
50 µg/mL	28.0	28.0	28.0	42.0	42.0	42.0
5.0 µg/mL	30.0	29.0	29.5	28.0	28.0	28.0
0.5 µg/mL	29.0	29.0	29.0	29.0	29.0	29.0
Concentration	Poly(HMI	DI-sL)-3.20	Average	Poly(HMI	DI-sL)-4.44	Average
Concentration 0.5 mg/mL	Poly(HMI >300	DI-sL)-3.20 >300	<i>Average</i> >300	Poly(HMI >300	DI-sL)-4.44 >300	<i>Average</i> >300
Concentration 0.5 mg/mL 50 µg/mL	Poly(HMI >300 77.0	DI-sL)-3.20 >300 78.0	Average >300 77.5	Poly(HMI >300 152.0	DI-sL)-4.44 >300 139.0	Average >300 145.5
Concentration 0.5 mg/mL 50 μg/mL 5.0 μg/mL	Poly(HMI >300 77.0 35.0	DI-sL)-3.20 >300 78.0 35.0	Average >300 77.5 35.0	Poly(HMI >300 152.0 41.0	DI-sL)-4.44 >300 139.0 41.0	Average >300 145.5 41.0

Polymer	Concentration	(6.67 mg/mL)	Average
poly(HMDI-L)	32.0	30.0	31.0
poly(TDI-L)	28.0	28.0	28.0
poly(IPDI-L)	29.0	29.0	29.0
HEPES only	28.4	28.2	28.2

Table S7. aPTT (s) results of deprotected glycopolymers from L-D with different diisocyanates and HEPES only

Part S9: Original data of Prothrombin Time of the sulfated glycopolymers

Concentration	Poly(H	DI-sL)	Average	Poly(HN	MDI-sL)	Average
0.5 mg/mL	> 60	> 60	> 60	> 60	> 60	> 60
50 μg/mL	> 60	> 60	> 60	> 60	> 60	> 60
5.0 µg/mL	13.0	13.0	13.0	14.0	14.0	14.0
0.5 µg/mL	15.0	14.0	14.5	14.0	13.5	13.8
Concentration	Poly(T	DI-sL)	Average	Poly(II	PDI-sL)	Average
0.5 mg/mL	> 60	> 60	> 60	> 60	> 60	> 60
50 μg/mL	14.0	14.0	14.0	> 60	> 60	> 60
5.0 µg/mL	14.5	14.0	14.3	14.0	14.0	14.0
0.5 µg/mL	14.0	14.0	14.0	14.0	15.0	14.5
Concentration	Poly(H	IDI-L)	Average	Poly(H	MDI-L)	Average
0.5 mg/mL	15.5	14.0	15.0	14.0	14.0	14.0
Concentration	Poly(7	T DI-L)	Average	Poly(I	PDI-L)	Average
0.5 mg/mL	14.0	14.0	14.0	14.0	15.0	14.5
Concentration	HEPE	S only	Average	Heparin (0.7 U/mL)	Average
N.A.	14.5	14.5	14.5	> 60	> 60	> 60

Table S8. PT (s) results of glycopolymers from L-D and different diisocyanates

Concentration	Poly(HMD	0I-sL)-0.57	Average	Poly(HMI	DI-sL)-1.60	Average
0.5 mg/mL	15.0	15.0	15.0	20.0	20.5	20.3
50 µg/mL	14.0	15.0	14.5	16.0	15.0	15.5
5.0 µg/mL	15.0	15.0	15.0	14.0	13.0	13.5
0.5 µg/mL	14.5	15.0	14.8	14.5	15.0	14.8
Concentration	Poly(HME	DI-sL)-3.20	Average	Poly(HMI	DI-sL)-4.44	Average
0.5 mg/mL	>60	. (0				
-	200	>60	>60	>60	>60	>60
50 μg/mL	20.0	>60 17.5	>60 18.8	>60 18.0	>60 17.0	>60 17.5
50 μg/mL 5.0 μg/mL	20.0 15.0	>60 17.5 15.0	>60 18.8 15.0	>60 18.0 14.0	>60 17.0 15.0	>60 17.5 14.5

Table S9. PT (s) results of poly(HMDI-sL) with different degrees of sulfate

Part S9: Original data of Thrombin Time of the sulfated glycopolymers

Concentration	Poly(H	(DI-sL)	Average	Poly(HN	ADI-sL)	Average
0.5 mg/mL	> 75	> 75	> 75	> 75	> 75	> 75
50 μg/mL	> 75	> 75	> 75	> 75	> 75	> 75
5.0 µg/mL	> 75	> 75	> 75	> 75	> 75	> 75
0.5 µg/mL	24.5	25.0	24.8	23.0	29.0	26.0
Concentration	Poly(T	DI-sL)	Average	Poly(IF	PDI-sL)	Average
0.5 mg/mL	> 75	> 75	> 75	> 75	> 75	> 75
50 μg/mL	> 75	> 75	> 75	> 75	> 75	> 75
5.0 µg/mL	> 75	> 75	> 75	> 75	> 75	> 75
0.5 µg/mL	24.0	24.5	24.3	23.5	24.0	23.8
Concentration	Poly(HDI-L)		Average	Poly(HMDI-L)		Average
0.5 mg/mL	23.0	24.5	23.8	24.0	25.0	24.5
Concentration	Poly(TDI-L)		Average	Poly(IPDI-L)		Average
0.5 mg/mL	24.0	28.0	26.0	26.0	23.0	24.5
Concentration	HEPES only		Average	Heparin (0.1 U/mL)	Average
N.A.	21.0	22.5	21.8	> 75	> 75	> 75

Table S10. PT (s) results of glycopolymers from L-D and different diisocyanates

Concentration	Poly(HMI	DI-sL)-0.57	Average	Poly(HMI	DI-sL)-1.60	Average
0.5 mg/mL	36.5	38.0	37.3	> 60	> 60	> 60
50 µg/mL	25.0	24.0	24.5	32.0	31.5	31.8
5.0 µg/mL	25.0	24.0	24.5	22.0	22.0	22.0
0.5 µg/mL	22.5	21.5	22.0	20.0	19.5	19.8
Concentration	Polv(HMI	DI-sL)-3.20	Average	Polv(HMI	DI-sL)-4.44	Average
	• <				· · · ·	in en age
0.5 mg/mL	> 60	> 60	> 60	> 60	> 60	> 60
0.5 mg/mL 50 μg/mL	> 60 > 60					
0.5 mg/mL 50 μg/mL 5.0 μg/mL	> 60 > 60 25.0	> 60 > 60 24.0	> 60 > 60 24.5	> 60 > 60 25.0	> 60 > 60 26.5	> 60 > 60 25.8

Table S11. PT (s) results of poly(HMDI-sL) with different degrees of sulfate

Part S11: IC₅₀ values of the sulfated polymers

Dolymor	IC ₅₀ (μg/mL), with	IC ₅₀ (µg/mL), without		
rorymer	antithrombin	antithrombin		
Heparin	0.0011 ± 0.0004	>100.0		
Poly(HMDI-sL)	0.059 ± 0.002	1.09 ± 0.02		
Poly(IPDI-sL)	0.0221 ± 0.0012	4.56 ± 1.29		
Poly(HDI-sL)	>0.1000	0.30 ± 0.02		
Poly(TDI-sL)	>0.1000	>100.0		

Table S12: IC $_{50}$ values of the sulfated polymers

References:

1. Huang, Y.; Shaw, M. A.; Mullins, E. S.; Kirley, T. L.; Ayres, N., Synthesis and Anticoagulant Activity of Polyureas Containing Sulfated Carbohydrates. *Biomacromolecules* **2014**, 15, (12), 4455-4466.

2. Johnson, J. C.; Wanasekara, N. D.; Korley, L. T. J., Utilizing Peptidic Ordering in the Design of Hierarchical Polyurethane/Ureas. *Biomacromolecules* **2012**, 13, (5), 1279-1286.

3. Javni, I.; Zhang, W.; Petrović, Z. S., Effect of different isocyanates on the properties of soy-based polyurethanes. *J. Appl. Polym. Sci.* **2003**, 88, (13), 2912-2916.

4. Hiltunen, K.; Seppälä, J. V.; Härkönen, M., Lactic acid based poly(ester-urethane)s: The effects of different polymerization conditions on the polymer structure and properties. *J. Appl. Polym. Sci.* **1997**, 64, (5), 865-873.