SUPPORTING INFORMATIONS

Fluorescent core-shell nanoparticles and nanocapsules using comb-like macromolecular RAFT agents: synthesis and functionalization thereof

Chloé Grazon^a*, Jutta Rieger^b*, Patricia Beaunier^c, Rachel Méallet-Renault^{a†}, Gilles Clavier^a

^a PPSM, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

^b Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Team : Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France.

^c Sorbonne Universités, UPMC Université Paris 06, UMR 7197-CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75252 Paris Cedex 05, France.

[†] present address: Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France)

1. Macro-RAFT agents

Scheme SI-1 Synthesis of the macro-RAFT agents

Table SI-1 Experimental results for macro-RAFT agents' synthesis (dioxane, 75°C, $[M]_0 = 2.1 \text{ mol/}L_{\text{dioxane}}$, $[RAFT]_0/[ACPA]_0 = 15$).

Macro-RAFT	[M] ₀ /	t	χм ^a	n _{APEO} ^b	n _{AA} ^b	M _{n, th}	M _{n, SEC}	$M_{\rm w}/M_{\rm n}$
	[RAFT] ₀	/ min	/ %			/ kg mol ⁻¹	/ kg mol ⁻¹	
PPEOA ₁₁	12	140	91	11	-	5.4	5.4	1.17
$P(AA_6-co-PEOA_6)$	15	110	81	6	6	3.5	3.5	1.21
$P(AA_{11}-co-PEOA_{11})$	25	140	86	11	11	6.2	6.0	1.16
$P(AA_{16}-co-PEOA_{17})$	43	140	77	17	16	9.2	8.1	1.20
PAA ₃	8	135	39	-	3	0.6	0.6	1.19
PAA ₃₅	80	130	46	-	35	2.9	3.4	1.13

^a Global molar conversion of monomers (M) AA and PEOA determined by ¹H NMR in CDCl₃. ^b average number of AA and PEOA units per macro-RAFT agent.

2. Fluorescent monomer

Figure SI-1 Fluorescent monomer: BODIPY phenyl methacrylate (π)

3. Miniemulsion polymerization process

Scheme SI-2 Synthetic pathway towards fluorescent nanoparticles using a one-pot phase inversion process (π = BODIPY monomer).

4. Nanoparticles' structure

Scheme SI-3 Schematic representation of both types of nanoparticles' shells described in the article: *linear* PEO-*b*-PAA *vs comb-like* P(AA-*co*-PEOA).

5. Core-shell polystyrene nanoparticles (NP)

Figure SI-2 Transmission electron microscopy images of the PS nanoparticles possessing a P(AA_x-*co*-PEOA_y) shell. Scale bar: **NP2**, **NP6**: 200 nm, **NP8**, **NP9**: 500 nm.

Figure SI-3 Size exclusion chromatograms in THF (RI detection) for polymeric chains of **NP2**, **NP6**, **NP8** and **NP9** at the beginning of the polymerization (corresponding to the isolated macro-RAFT agent) (— yellow), end of mass polymerization (— grey) and end of miniemulsion polymerization (— black).

6. Fluorescent nanoparticles (FNP)

Figure SI-4 Size exclusion chromatograms in THF (plain lines: RI detection, broken — green lines: UV-vis. detection at $\lambda = 528$ nm) for polymer chains of **FNP3** at the beginning of the polymerization (corresponding to the isolated macro-RAFT agent) (— yellow), end of mass polymerization (— grey) and end of miniemulsion polymerization (— black).

Figure SI-5 Transmission electron microscopy images of the fluorescent nanoparticles **FNP3** possessing a P(AA₆-*co*-PEOA₆) shell. Scale bar: 500 nm.

7. Equations

The aggregation number N_{agg} was calculated using the following equation:

$$N_{agg} = \frac{N_{chain}}{N_{FNP}} = \frac{V_{FNP}}{V_{PS}} \times N_{chain} = \frac{\frac{4}{3}\pi r^3}{m_S \rho_{PS}} \times N_{chain}$$
 Equation SI-1

where N_{chain} is the total number of growing chains (which is equal to the number of macro-RAFT agent assuming they are all incorporated in the nanoparticles), N_{FNP} is the number of fluorescent nanoparticles, V_S the total volume of polystyrene in the synthesis, V_{NP} is the volume of one fluorescent nanoparticle, m_S the converted mass of styrene in the synthesis, r_{PS} the polystyrene density and r the core radius of the nanoparticles determined by TEM microscopy.

The number of BODIPY units per polymer chain was calculated using the equation:

$$\eta_{\pi} = \frac{n_{\pi}}{n_{RAFT}}$$
 Equation SI-2

where n_{π} and n_{RAFT} are respectively the number of moles of BODIPY and macro-RAFT agent used in the nanoparticles synthesis.

The number of BODIPY monomers per NP was calculated using the equation:

$$N_{\pi} = N_{agg} \times \eta_{\pi}$$
 Equation SI-3

The density of polymer chains on the surface of the nanoparticles (d) was estimated by:

$$d = \frac{N_{agg}}{4\pi \frac{D_{TEM}}{2}^2}$$
 Equation SI-4

where N_{agg} is the aggregation number (Equation SI-1) and D_{TEM} is the diameter of the core of the nanoparticles determined with the TEM images.