Supporting Information

Color Tuning of Alternating Conjugated Polymers Composed of Pentaazaphenalene by Modulating Their Unique Electronic Structures Involving Isolated-LUMOs

Hiroyuki Watanabe[†], Masataka Hirose[†], Kazuyoshi Tanaka[‡], Kazuo Tanaka^{*†}, and Yoshiki

Chujo*†

[†]Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University,

Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

[‡]Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103 Japan

kazuo123@chujo.synchem.kyoto-u.ac.jp chujo@chujo.synchem.kyoto-u.ac.jp

General

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on JEOL JNM-EX400 or JNM-AL400 spectrometers. ¹H and ¹³C spectra used tetramethylsilane (TMS) as an internal standard in CDCl₃. High-resolution mass spectra (HRMS) were obtained on a Thermo Fisher EXACTIVE for electron spray ionization (ESI). UV–vis absorption spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. Gel permeation chromatography (GPC) was carried out on a TOSOH 8020 (TSKgel G3000HXL column) instrument using chloroform as an eluent after calibration with standard polystyrene samples. Cyclic voltammetry (CV) was carried out on a BAS ALS-Electrochemical-Analyzer Model 600D with a glassy carbon working electrode, a Pt counter electrode, an Ag/Ag⁺ reference electrode, and the ferrocene/ferrocenium external reference at a scan rate of 0.05 Vs⁻¹. All reactions were performed under argon. The films for UV–vis absorption measurement were prepared by spin-coat method using MIKASA Spincoater 1H-D7.

Materials

All reagents were obtained from commercial sources and used without further purification. 2,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-didodecylfluorene¹, 4,4'-didodecyl-2,2'-bithiophene-5,5'-diboronic acid bis(pinacol)ester², 2,5-didodecyloxybenzene-1,4-diboronic acid bis (pinacol)ester³, 4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,1,3-benzothiadiazole⁴, and 1-perfluorooctyl-4-trifluoromethyl-2,5-dibromobenzene⁵ were prepared according to the literatures.

Synthesis

The copies of the NMR spectra are shown in Figure S1–S10.

N-Cyano-*N*'-(6-amino-2-pyridyl)acetamidine (1).

A solution of 2,6-diaminopyridine (25 g, 0.23 mol) and methyl *N*-cyanoacetimidate (25 g, 0.26 mol) in 100 mL of degassed glyme was stirred at room temperature for 24 h. A part of the product was precipitated after stirring overnight. After filtration, the precipitate was washed repeatedly with chloroform and ethanol. The filtrate was evaporated *in vacuo*. Then, the residue was washed repeatedly with chloroform and ethanol. The crude was obtained as an off-white powder (27.0 g, 0.15 mol, 67%). ¹H NMR (DMSO-*d*₆, ppm): 10.62 (s, 1H, NH), 7.45 (t, J = 8.0 Hz, 1H, Ar), 7.27 (d, J = 7.9 Hz, 1H, Ar), 6.33 (d, J = 7.9 Hz, 1H, Ar), 5.96 (s, 2H, NH₂), 2.47 (s, 3H, Me). ¹³C NMR (DMSO-*d*₆, ppm): 170.7, 158.6, 148.8, 138.9, 116.5, 105.1, 103.0, 21.6. HRMS (p-ESI) calcd. for C₈H₉N₅+H [M+H]⁺ 176.0932, found 176.0931.

Tridecanoyl chloride (2).

This compound was synthesized according to the literature with tridecanoic acid (25 g, 117 mmol).⁶ The reaction proceeded quantitatively from the ¹H NMR analyses, and the product was used for the subsequent reaction without purification. ¹H NMR (CDCl₃, ppm): 2.80 (t, 7.3 Hz, 2H, RCH₂COCl), 1.63 (p, J = 7.5 Hz, 2H, R'CH₂CH₂COCl), 1.1–1.3 (br m, 18H), 0.80 (t, J = 6.5 Hz, 3H, CH₃).

2-Dodecyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (3, 5AP-C12).

The synthesis was performed according to the previous literature⁷. A cold slurry (0 °C) of **1** (4.38 g, 25 mmol) and dehydrated pyridine (1.98 g, 2 mL, 25 mmol) in 35 mL of degassed glyme was stirred. Then, **2** (15 mL, 60 mmol) was added dropwise. After the mixture was refluxed for 4 h, the reaction was quenched by slowly adding methanol and subsequent saturated aqueous sodium hydrogen carbonate. The mixture was extracted with 3 × 50 mL of chloroform. The combined organic layers were washed with water (3 × 100 mL) and brine, and then dried over magnesium sulfate. After filtration, the solvent was removed *in vacuo*. Recrystallization from chloroform and methanol gave **3** as a pink powder (4.92 g, 14 mmol, 56%). ¹H NMR (CD₂Cl₂, ppm): 7.16 (t, 1H, Ar), 5.95 (m, 2H, Ar), 1.87 (s, 3H, Ar-CH₃), 2.08 (t, 2H, Ar-CH₂), 1.51 (p, *J* = 7.4 Hz, 2H, Ar-CH₂CH₂), 1.1–1.3 (m, 18H), 0.80 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (CD₂Cl₂, ppm): 181.2, 178.0, 160.5, 155.2, 155.1, 146.1, 146.0, 111.2, 110.9, 39.3, 32.3, 30.1, 30.0, 29.9, 29.78, 29.76, 29.6, 26.9, 25.9, 25.8, 23.1, 14.2. HRMS (p-ESI) calc. for C₂₁H₃₁N₅+H [M+H]⁺ 354.2652, found 354.2649.

7,9-Dibromo-2-dodecyl-5-methyl-1,3,4,6,9b-pentaazaphenalene (4, 5AP-C12-Br2).

A solution of **3** (3.35 g, 9 mmol) and of *N*-bromosuccinimide (5.36 g, 30 mmol) in 150 mL of degassed chloroform was refluxed for 3 d. The residual solution was evaporated under vacuum. After column chromatography on silica gel using chloroform as an eluent, followed by recrystallization from chloroform / methanol, the product (2.07 g, 4.05 mmol, 41%) was obtained as a purple powder. ¹H NMR (CD₂Cl₂, ppm): 7.85 (s, 1H, Ar), 2.30 (t, J = 7.6 Hz, 2H, Ar-CH₂), 2.09 (s, 3H, Ar-CH₃), 1.62 (p, J = 7.7 Hz, 2H, Ar-CH₂CH₂), 1.2–1.4 (m, 18H), 0.88 (t, J = 7.2 Hz, 3H, CH₃). ¹³C NMR (CD₂Cl₂, ppm): 182.5, 179.3, 160.1, 151.64, 151.56, 151.0, 102.8, 102.4, 39.4, 32.4, 30.08, 30.07, 30.05, 29.9, 29.8, 29.6, 26.8, 26.21, 26.18, 14.3. HRMS (p-ESI) calcd. for C₂₁H₂₉Br₂N₅+H [M+H]⁺ 512.0842, found 512.0837.

1-Perfluorooctyl-4-trifluoromethylbenzene-2,5-diboronic acid bis(pinacol)ester (5).

To a THF (30 mL) solution of 1-perfluorooctyl-4-trifluoromethyl-2,5-dibromobenzene (1.44g, 2 mmol) was slowly added *tert*-BuLi (1.54 M in *n*-pentane, 10.4 mL, 16 mmol) at -78 °C. After stirred for 20 min, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.72 g, 20 mmol) was slowly added to the mixture. The reaction mixture was stirred for an additional 1 h, then allowed to warm to room temperature. After stirring for 22 h at room temperature, the reaction was carefully quenched by water. The mixture was diluted with chloroform, washed with brine and dried over sodium sulfate, and then the solvent was removed under reduced pressure. The crude product was purified with column chromatography on silica gel using hexane/ethyl acetate (40:1) as an eluent. Recrystallization from chloroform/methanol gave the desired product as an off-white solid (0.80 mmol, 40%). ¹H NMR (CDCl₃, ppm): 7.89 (s, 2H, Ar), 1.37 (s, 12H, Me), 1.36 (s, 12H, Me). ¹³C NMR (CDCl₃, ppm): 136.2 (q, *J* = 32 Hz, *C*(Ar)-CF₃), 134.3 (t, *J* = 23 Hz, *C*(Ar)-CF₂-), 133.7 (br t, *C*(Ar)-B, adjacent to *C*(Ar)-CF₂-), 130.7(br q, *C*(Ar)-B, adjacent to *C*(Ar)-CF₃), 125.1(s, *C*(Ar)-H), 122.4 (s, *C*(Ar)-H), 85.0, 84.9, 24.7, 24.6. Other peaks of the fluoroalkyl chains were

not detectable because of the ${}^{13}C_{-19}F$ coupling. HRMS (p-ESI) calcd. for $C_{27}H_{26}B_2F_{20}O_4$ +Na [M+Na]+ 839.1590, found 839.1592.

General polymerization procedure.

Compound **4** (51.13 mg, 0.1 mmol), aryl diboronic acid bis (pinacol)ester (0.1 mmol), tris(dibenzylideneacetone)dipalladium(0) (Pd₂(dba)₃, 4.58 mg, 5 μ mol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos, 8.21 mg, 0.02 mmol) and cesium carbonate (325 mg, 1.0 mmol) were dissolved in toluene (2.0 mL) and H₂O (2.0 mL). After stirred at 85 °C for 3 d, the mixture was diluted with toluene, and the polymeric products were isolated by reprecipitation into methanol.

5AP-co-FL.

A purple solid, 89% yield. $M_{\rm n} = 8,600, M_{\rm w}/M_{\rm n} = 3.7$.

¹H NMR (CD₂Cl₂, ppm): 7.73–7.71 (br d, 2H, Ar-*H* of fluorene(FL)), 7.67–7.64 (br d, 2H, Ar-*H* of FL), 7.60 (br, 2H, Ar-*H* of FL), 7.43 (br, 1H, Ar-*H* of 5AP), 2.19 (br, 2H, Ar- CH_2 of 5AP), 1.97 (br, 3H, Ar- CH_3 of 5AP), 1.9 (br, 4H, Ar- CH_2 of FL), 1.5 (br, 2H, Ar- CH_2 - CH_2 of 5AP), 1.3–0.9 (br, 58H, alkyl chains of FL and 5AP), 0.86 (br t, 6H, - CH_3 of FL), 0.74 (br, 3H, - CH_3 of 5AP). Coupling constants were not calculated due to severely broadened peaks.

5AP-co-Bithio.

A green solid was obtained quantitatively. $M_{\rm n} = 5,800$, $M_{\rm w}/M_{\rm n} = 1.9$.

¹H NMR (CD₂Cl₂, ppm): 7.49 (br, 2H Ar-*H* of bithiophene(Bithio)), 7.32 (br, 1H, Ar-*H* of 5AP), 2.54 (br, 4H Ar-CH₂ of Bithio), 2.38 (br, 2H, Ar-CH₂ of 5AP), 2.13 (br, 3H, Ar-CH₃ of 5AP), 1.71 (br, 2H, Ar-CH₂-CH₂ of 5AP), 1.3–1.0 (br, 58H, alkyl chains of Bithio and 5AP), 0.86 (br, 9H, -CH₃ of Bithio and 5AP).

5AP-co-OC10.

A purple solid, 89% yield. $M_{\rm n} = 6,200$, $M_{\rm w}/M_{\rm n} = 1.9$.

¹H NMR (CD₂Cl₂, ppm): 7.46 (br, 1H, Ar-*H* of 5AP), 6.8 (br m, 2H, Ar-*H* of 1,4didecyloxybenzene(OC₁₀)), 3.86 (br, 4H, Ar-CH₂ of OC₁₀), 2.17 (br, 2H, Ar-CH₂ of 5AP), 1.97 (br, 3H, Ar-CH₃ of 5AP), 1.71 (br, 4H, Ar-CH₂-CH₂ of OC₁₀), 1.5 (br, 2H, Ar-CH₂-CH₂ of 5AP), 1.4–1.0 (br, 46H, alkyl chains of OC₁₀ and 5AP), 0.86 (br, 9H, -CH₃ of OC₁₀ and 5AP).

5AP-co-BThZ.

A brown solid, 90% yield. $M_{\rm n} = 3,800$, $M_{\rm w}/M_{\rm n} = 1.5$.

¹H NMR (CD₂Cl₂, ppm): 7.90 (br, 2H, Ar-*H* of 2,1,3-benzothiadiazole), 7.37 (br, 1H, Ar-*H* of 5AP), 2.15 (br, 2H, Ar-CH₂ of 5AP), 1.95 (br, 3H, Ar-CH₃ of 5AP), 1.6 (br, 2H, Ar-CH₂-CH₂ of 5AP), 1.2–1.0 (br, 18H, alkyl chain of 5AP), 0.87 (br, 3H, -CH₃ of 5AP).

5AP-co-CF3.

A purple solid, 62% yield. $M_{\rm n} = 8,100$, $M_{\rm w}/M_{\rm n} = 3.0$.

¹H NMR (CD₂Cl₂, ppm): 7.60 (br, 2H, Ar-*H* of fluoroalkylbenzene), 7.21 (br, 1H, Ar-*H* of 5AP), 2.1–1.7 (br, 5H, Ar-CH₃ of 5AP and Ar-CH₂ of 5AP), 1.42 (br, 2H, Ar-CH₂-CH₂ of 5AP), 1.3–1.0 (br, 18H, alkyl chain of 5AP), 0.87 (br, 3H, -CH₃ of 5AP).

References

1. Hai, J.; Zhu, E.; Bian, L.; Wang, J.; Wang, Z.; Li, Y.; Yin, L.; Zhang, F.; Tang, W. *Eur. Polym. J.* **2013**, *49*, 3610–3618.

2. Yoshii, R.; Tanaka, K.; Chujo, Y. Macromolecules 2014, 47, 2268-2278.

3. Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2006, 39, 8712-8719.

4. Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K. J. Am. Chem. Soc. 2007, 129, 3472–3473.

5. Kim, Y.; Whitten, J. E.; Swager, T. M. J. Am. Chem. Soc. 2005, 127, 12122-12130.

6. Ogihara, K and Takayama, Y. Eur. Pat. Appl., 839515, 06 May 1998.

7. Shaw, J. T.; O'Connor, M. E.; Allen, R. C.; Westler, W. M.; Stefanko, B. D. J. Heterocycl. Chem. 1974, 11, 627–630.

 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

Excited State	Excitation Energy	Assignment with Weight ^b	Oscillator Strength f
	(Wavelength)	Assignment with weight	
1	2.1955 eV	HOMO−2 → LUMO 0.018550	0.0383
	(564.73 nm)	HOMO \rightarrow LUMO 0.468184	
2	3.0892 eV	HOMO-1 \rightarrow LUMO 0.487735	0.0054
	(401.34 nm)		
3	3.3481 eV	HOMO \rightarrow LUMO+1 0.492593	0.4961
	(370.31 nm)		
4	3.3636 eV	HOMO-2 \rightarrow LUMO 0.457544	0.0451
	(368.61 nm)	HOMO \rightarrow LUMO 0.021913	
5	3.4871 eV	HOMO-2 \rightarrow LUMO 0.010254	0.2775
	(355.55 nm)	HOMO \rightarrow LUMO+2 0.470226	
6	3.6627 eV	HOMO-7 \rightarrow LUMO 0.180447	0.0019
	(338.50 nm)	HOMO-5 \rightarrow LUMO 0.094735	
		HOMO-3 \rightarrow LUMO 0.185959	
7	3.7648 eV	HOMO-8 \rightarrow LUMO 0.048435	0.4094
	(329.33 nm)	HOMO-6 \rightarrow LUMO 0.014390	
		HOMO-4 \rightarrow LUMO 0.019379	
		HOMO-1 \rightarrow LUMO+1	
		0.079332	
		HOMO \rightarrow LUMO+3 0.317792	
8	3.7710 eV	HOMO-8 \rightarrow LUMO 0.164349	0.0033
	(328.78 nm)	HOMO-6 \rightarrow LUMO 0.055089	
		HOMO-4 \rightarrow LUMO 0.071353	
		HOMO-1 \rightarrow LUMO+1	
		0.029070	
		$HOMO \rightarrow LUMO+3 0.145687$	

Table S1. TD-DFT calculation^a result of FL

9	3.8128 eV	HOMO-8 \rightarrow LUMO 0.037465	0.3030
	(325.18 nm)	HOMO-6 \rightarrow LUMO 0.020521	
		HOMO-4 \rightarrow LUMO 0.027872	

		$HOMO-1 \rightarrow LUMO+1$	
		0.378643	
		HOMO \rightarrow LUMO+3 0.022100	
10	3.9815 eV	HOMO-8 \rightarrow LUMO 0.196373	0.0033
	(311.40 nm)	HOMO-6 \rightarrow LUMO 0.059370	
		HOMO-4 \rightarrow LUMO 0.208493	

^a All TD-DFT calculations were performed at B3LYP/6-31G++(d) level using Gaussian 09 software package⁸.
 ^b Square of CI expansion coefficient.

Excited State	Excitation Energy	Assignment with Weight	Oscillator Strength f
	(Wavelength)		
1	2.0686 eV	$HOMO \rightarrow LUMO \ 0.474005$	0.0464
	(599.37 nm)	$HOMO \rightarrow LUMO+2\ 0.011396$	
2	3.0476 eV	HOMO-1 \rightarrow LUMO 0.486060	0.0065
	(406.82 nm)		
3	3.1871 eV	HOMO \rightarrow LUMO+1 0.455787	0.5467
	(389.01 nm)	HOMO \rightarrow LUMO+2 0.031195	
4	3.1955 eV	HOMO \rightarrow LUMO+1 0.032227	0.2190
	(388.00 nm)	HOMO \rightarrow LUMO+2 0.441401	
5	3.4181 eV	HOMO-8 \rightarrow LUMO 0.032368	0.0092
	(362.69 nm)	HOMO-2 \rightarrow LUMO 0.448203	
6	3.6076 eV	HOMO-9 \rightarrow LUMO 0.095339	0.0108
	(343.67 nm)	HOMO-7 \rightarrow LUMO 0.086648	
		HOMO-6 \rightarrow LUMO 0.047428	
		HOMO-5 \rightarrow LUMO 0.093697	
		HOMO-4 \rightarrow LUMO 0.149994	
7	3.6213 eV	HOMO-10 \rightarrow LUMO 0.015540	0.0374
	(342.37 nm)	HOMO-8 \rightarrow LUMO 0.023180	
		HOMO-7 \rightarrow LUMO 0.020658	
		HOMO-6 \rightarrow LUMO 0.024643	
		HOMO-5 \rightarrow LUMO 0.107741	
		HOMO-4 \rightarrow LUMO 0.080055	
		HOMO-3 \rightarrow LUMO 0.060974	
		HOMO-1 \rightarrow LUMO+1	
		0.143732	
8	3.6272 eV	HOMO-5 \rightarrow LUMO 0.014144	0.0216
	(341.82 nm)	HOMO-3 \rightarrow LUMO 0.390838	
		HOMO-1 \rightarrow LUMO+1	
		0.056103	

3.6838 eV HOMO-7 \rightarrow LUMO 0.012168 0.2013

(336.56 nm)	HOMO-6 \rightarrow LUMO 0.042308
	HOMO-5 \rightarrow LUMO 0.076469
	HOMO-4 \rightarrow LUMO 0.082329
	HOMO-1 \rightarrow LUMO+1
	0.256532

10	3.8015 eV	HOMO-9 \rightarrow LUMO 0.253603	0.0323
	(326.14 nm)	HOMO-8 \rightarrow LUMO 0.049093	
		HOMO-5 \rightarrow LUMO 0.081179	
		HOMO-4 \rightarrow LUMO 0.058404	
		HOMO-3 \rightarrow LUMO 0.013426	
		HOMO \rightarrow LUMO+3 0.012419	

Evoited State	Excitation Energy	Assignment with Weight	Oscillator Strength f
Excited State	(Wavelength)	Assignment with weight	Osemator Strength j
1	2.3210 eV	HOMO-2 \rightarrow LUMO 0.018635	0.0152
	(534.19 nm)	HOMO \rightarrow LUMO 0.469362	
2	2.9919 eV	HOMO-1 \rightarrow LUMO 0.496546	0.0007
	(414.40 nm)		
3	3.0414 eV	HOMO-2 \rightarrow LUMO 0.475741	0.0015
	(407.66 nm)	HOMO \rightarrow LUMO 0.019971	
4	3.6380 eV	HOMO-5 \rightarrow LUMO 0.076049	0.0328
	(340.80 nm)	HOMO-3 \rightarrow LUMO 0.347074	
		HOMO \rightarrow LUMO+1 0.062565	
5	3.6902 eV	HOMO-5 \rightarrow LUMO 0.028839	0.2835
	(335.99 nm)	HOMO-3 \rightarrow LUMO 0.038632	
		HOMO \rightarrow LUMO+1 0.406840	
6	3.7048 eV	HOMO \rightarrow LUMO+2 0.471406	0.1143
	(334.66 nm)		
7	3.8575 eV	HOMO-6 \rightarrow LUMO 0.168995	0.0002
	(321.41 nm)	HOMO-4 \rightarrow LUMO 0.300896	
8	3.8672 eV	HOMO-1 \rightarrow LUMO+1 0.489272	0.0451
	(320.61 nm)		
9	3.9674 eV	HOMO-2 \rightarrow LUMO+1 0.385902	0.0059
	(312.51 nm)	HOMO-1 → LUMO+2 0.097888	
10	3.9846 eV	HOMO-2 \rightarrow LUMO+1 0.089413	0.0121
	(311.16 nm)	HOMO-1 \rightarrow LUMO+2 0.395176	

 Table S3. TD-DFT calculation result of OC10

Excited State	Excitation Energy (Wavelength)	Assignment with Weight	Oscillator Strength f
1	2.3241 eV	HOMO \rightarrow LUMO 0.056017	0.0340
	(533.47 nm)	HOMO \rightarrow LUMO+1 0.093673	
		HOMO \rightarrow LUMO+2 0.334535	
2	2.4981 eV	HOMO \rightarrow LUMO 0.432780	0.0821
	(496.32 nm)	HOMO \rightarrow LUMO+1 0.034969	
		HOMO \rightarrow LUMO+2 0.028328	
3	2.5498 eV	HOMO \rightarrow LUMO+1 0.367551	0.0199
	(486.25 nm)	HOMO \rightarrow LUMO+2 0.122038	
4	3.5340 eV	HOMO-1 \rightarrow LUMO 0.438072	0.0348
	(350.83 nm)	HOMO-1 \rightarrow LUMO+2 0.032580	
5	3.5874 eV	HOMO-3 \rightarrow LUMO+2 0.040913	0.0358
	(345.61 nm)	HOMO-2 \rightarrow LUMO+2 0.020301	
		HOMO-1 \rightarrow LUMO 0.042770	
		HOMO-1 \rightarrow LUMO+1 0.185614	
		HOMO-1 \rightarrow LUMO+2 0.169736	
6	3.6735 eV	HOMO-3 \rightarrow LUMO+2 0.022082	0.0723
	(337.51 nm)	HOMO-1 \rightarrow LUMO+1 0.268272	
		HOMO-1 \rightarrow LUMO+2 0.142793	
		HOMO \rightarrow LUMO+3 0.030909	
7	3.7023 eV	HOMO-2 \rightarrow LUMO 0.010994	0.0864
	(334.89 nm)	HOMO-2 \rightarrow LUMO+2 0.027400	
		HOMO-1 \rightarrow LUMO+1 0.025370	
		HOMO \rightarrow LUMO+3 0.340764	
		HOMO \rightarrow LUMO+4 0.055079	
8	3.7720 eV	HOMO-3 \rightarrow LUMO+2 0.026507	0.0958
	(328.70 nm)	HOMO-2 \rightarrow LUMO 0.253643	
		HOMO-2 \rightarrow LUMO+1 0.022350	
		$HOMO-2 \rightarrow LUMO+2 \ 0.043152$	
		HOMO-1 \rightarrow LUMO+2 0.044243	
		HOMO \rightarrow LUMO+3 0.057576	
		HOMO \rightarrow LUMO+4 0.016025	
9	3.8058 eV	HOMO-5 \rightarrow LUMO+2 0.032512	0.1674
	(325.78 nm)	HOMO-4 \rightarrow LUMO+2 0.015969	

	$HOMO-3 \rightarrow LUMO \ 0.011662$	
	HOMO-3 \rightarrow LUMO+1 0.010028	
	HOMO-3 \rightarrow LUMO+2 0.086084	
	HOMO-2 \rightarrow LUMO 0.011453	
	HOMO-1 \rightarrow LUMO+2 0.030695	
	HOMO \rightarrow LUMO+3 0.014578	
	HOMO \rightarrow LUMO+4 0.245491	
3.8250 eV	HOMO-6 \rightarrow LUMO+2 0.029255	0.0530
(324.14 nm)	HOMO-5 \rightarrow LUMO+2 0.070135	
	HOMO-4 \rightarrow LUMO+1 0.020079	
	HOMO-4 \rightarrow LUMO+2 0.128357	
	HOMO-3 \rightarrow LUMO 0.019488	
	HOMO-2 \rightarrow LUMO+1 0.065669	
	HOMO-2 \rightarrow LUMO+2 0.035153	
	HOMO \rightarrow LUMO+4 0.057730	

Evolted State	Excitation Energy	Agaignment with Weight	Oggillator Strongth f	
Exclied State	(Wavelength)	Assignment with weight	Osemator Strength J	
1	2.4260 eV	HOMO \rightarrow LUMO 0.487679	0.0102	
	(511.07 nm)			
2	3.4937 eV	HOMO \rightarrow LUMO+1 0.476445	0.0703	
	(354.88 nm)	HOMO \rightarrow LUMO+4 0.011535		
3	3.5976 eV	HOMO \rightarrow LUMO+2 0.493239	0.0123	
	(344.63 nm)			
4	3.6981 eV	HOMO-3 \rightarrow LUMO 0.020575	0	
	(335.26 nm)	HOMO-1 \rightarrow LUMO 0.459223		
5	3.8107 eV	HOMO-2 \rightarrow LUMO 0.466434	0.0005	
	(325.36 nm)			
6	3.9130 eV	HOMO-7 \rightarrow LUMO 0.015528	0.1626	
	(316.85 nm)	HOMO \rightarrow LUMO+3 0.464020		
7	4.0066 eV	HOMO \rightarrow LUMO+4 0.307637	0.0389	
	(309.45 nm)	HOMO \rightarrow LUMO+5 0.186477		
8	4.1319 eV	HOMO \rightarrow LUMO+6 0.493731	0.0015	
	(300.06 nm)			
9	4.2417 eV	HOMO \rightarrow LUMO+1 0.016471	0.2040	
	(292.30 nm)	$HOMO \rightarrow LUMO+4 \ 0.161942$		
		HOMO \rightarrow LUMO+5 0.293233		
10	4.5596 eV	HOMO-3 \rightarrow LUMO 0.306429	0.0168	
	(271.92 nm)	HOMO-1 \rightarrow LUMO 0.028016		
		HOMO-1 \rightarrow LUMO+3 0.132110		

Table S5. TD-DFT calculation result of CF3

Figure S1. a) ¹H and b) ¹³C NMR spectra of 1.

Figure S2. ¹H NMR spectrum of 2.

Figure S3. a) ¹H and b) ¹³C NMR spectra of 3.

Figure S4. a) ¹H and b) ¹³C NMR spectra of 4.

Figure S5. a) 1 H and b) 13 C NMR spectra of 5.

Figure S6. ¹H NMR spectrum of **5AP-co-FL**.

Figure S7. 1 H NMR spectrum of **5AP-co-Bithio**.

Figure S9. ¹H NMR spectrum of 5AP-co-BThZ.

Figure S10. ¹H NMR spectrum of 5AP-co-CF3.

Figure S11. UV–vis absorption spectra of the polymers in the film states (prepared by spin-coat method from 1.0×10^{-3} M chloroform solutions).

Figure S12. Calculated energy levels of 5AP and each comonomer unit. Long alkyl chains were replaced by methyl groups.