Electronic Supplementary Information (ESI)

for

Polymeric prodrugs conjugated with reduction-sensitive dextrancamptothecin and pH-responsive dextran-doxorubicin: An effective combinatorial drug delivery platform for cancer therapy

Dongling Cao^a, Jinlin He^a, Jiaying Xu^b, Mingzu Zhang^a, Lin Zhao^b, Guangxin Duan^b, Youwen Cao^a, Ruhong Zhou^{b,c,d,*}, Peihong Ni^{a,*}

10

5

^a College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory
for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision
Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University,
Suzhou 215123, P. R. China Tel: +86-512-65882047; E-mail: phni@suda.edu.cn
15 ^b School for Radiological & Interdisciplinary Science, and Collaborative Innovation Center of Radiation Medicine of
Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
^c Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, NY 10598, USA; E-
mail: <u>ruhongz@us.ibm.com</u>
^d Department of Chemistry, Columbia University, New York, NY 10027, USA

20

25

35

30

Fig. S1 UV spectra of CPT, CPT-ss-N₃, Dex-C≡C₂₀, and Dex-ss-CPT_{10.6}.

10 Fig. S2 HPLC curves of (A) CPT, (B) CPT-ss-N₃, (C) DMSO, and (D) Dex-ss-CPT_{10.6}. HPLC analyses were performed with acetonitrile/water (75/25, v/v) as the mobile phase at 30 °C at a flow rate of 1.0 mL min⁻¹.

Fig. S3 UV spectra of DOX, DOX-*hyd*-N₃, Dex-C= C_{20} , Dex-*hyd*-DOX_{5.9} and Dex-*hyd*-DOX_{5.9} (acid breaking).

10 Fig. S4 HPLC curves of (A) DOX, (B) DOX-*hyd*-N₃, (C) Dex-*hyd*-DOX_{5.9} and (D) DMSO. HPLC analyses were performed with acetonitrile/water (50/50, v/v) as the mobile phase at 30 °C at a flow rate of 1.0 mL min⁻¹.

5

Fig. S5 Intensity ratios (I_3/I_1) in fluorescence emission spectra of pyrene as a function of logarithm concentration for (A) Dex-*ss*-CPT_{10.6} and (B) Dex-*hyd*-DOX_{5.9} in aqueous solution.

Fig. S6 TEM images of nanoparticles formed from (A) Dex-ss-CPT_{10.6} and (C) Dex-hyd-DOX_{5.9}; (B) and (D) are the
particle size distribution curves corresponding to (A) and (C), respectively.

Fig. S6 (A) TEM image of nanoparticles formed from Dex-*ss*-CPT_{10.6} and Dex-*hyd*-DOX_{5.9}, and (B) is the particle size distribution curves corresponding to (A).