Electronic Supplementary Information

Biaxially Extended Thiophene-Isoindigo Donor-Acceptor Conjugated Polymers for High-Performance Flexible Field-Effect Transistors

Hung-Chin Wu,[†] Chian-Wen Hong,[†] and Wen-Chang Chen^{*}

Department of Chemical Engineering, National Taiwan University,

Taipei 10617, Taiwan

[†] H.-C. Wu and C.-W. Hong contributed equally to this work

Tel: 886-2-23628398, Fax: 886-2-23623040

E-mail:chenwc@ntu.edu.tw

Polymer	Lamellar spacing (Å)	In-plane π - π stacking distance (Å)
PIITT4T	23.4	_
PIITT4TSi	26.5	3.59
PII2T4T	21.8	4.13
PII2T4TSi	23.9	3.58
PII2T8T	-	-
PII2T8TSi	29.4	-

Table S1. Relevant Crystallographic Properties for the Studied Polymer Thin Films

Fig. S1. ¹H-NMR spectrum of (a) TT4T, (b) 2T4T, and (c) 2T8T in CD_2Cl_2 (x: CD_2Cl_2 , y: H_2O).

Fig. S2. ¹H-NMR spectrum of (a) TT4T-ditin, (b) PIITT4T, and (c) PIITT4TSi in CD_2Cl_2 (x: CD_2Cl_2 ; y: H_2O).

Fig. S3. ¹H-NMR spectrum of (a) 2T8T-ditin in CD_2Cl_2 (x: CD_2Cl_2 ; y: H_2O), (b) PII2T8T in $CDCl_3$ (x: $CDCl_3$; y: H_2O), and (c) PII2T8TSi in CD_2Cl_2 (x: CD_2Cl_2 ; y: H_2O).

Fig. S4. DSC curves of the studied polymers under a nitrogen atmosphere.

Fig. S5. UV-Vis absorption spectra of the studied polymers in dilute chloroform solution.

Fig. S6. FET output curves of (a) PIITT4T-, (b) PIITT4TSi-, (c) PII2T4T-, (d) PII2T8T-, and (e) PII2T8TSi-based device, respectively.