Supporting Information

Catechol/boronic acid chemistry for the creation of block copolymers with a multi-stimuli responsive junction

Fanny Coumes¹, Aurélie Malfait¹, Marc Bria², Joël Lyskawa¹, Patrice Woisel^{*1} and David Fournier^{*1}

¹ Université Lille 1, Unité des Matériaux Et Transformations (UMET, UMR CNRS 8207),

Ingénierie des Systèmes Polymères (ISP) team, 59655 Villeneuve d'Ascq Cedex, France

² Centre Commun de mesure RMN, Université Lille 1, Villeneuve d'Ascq Cedex, France

*Corresponding author: david.fournier@univ-lille1.fr

Characterization of Boro-CTA:

Figure S1. (A) ¹³C NMR of Boro-CTA (B) COSY NMR of Boro-CTA.

<u>¹H NMR (300 MHz, DMSO-*d₆*), δ (ppm/TMS)</u>: 0.93 (d, 6H, CH-(CH₃)₂), 1.68 (s, 6H, C(CH₃)₂),
1.86 (m, 1H, CH₂-CH-(CH₃)₂), 3.18 (t, 2H, S-CH₂-CH), 5.08 (s, 2H, CH₂-Aryl), 7.35 (d, 2H, Aryl-*H_i H_i*), 7.75 (s, 1H, Aryl-*H_k*), 7.87 (s, 1H, Aryl-*H_m*)

$\frac{^{13}\text{C NMR (75 MHz, DMSO-}d_{6})}{^{127.4}(C_{k}), 129.7(C_{1}), 133.9(C_{j}), 134(C_{m}), 134.4(C_{o}), 131.7(C_{n}), 171.7(C_{g}), 220.3(C_{d})}$

Characterization of ND-CTA :

Figure S2. (A) $^1\!\mathrm{H}$ NMR, (B) $^{13}\!\mathrm{C}$ NMR and (C) COSY NMR of ND-CTA .

<u>¹H NMR (300 MHz, CDCl₃), δ (ppm/TMS)</u>:

0.99 (d, 6H, CH(CH₃)₂), 1.66 (s, 6H, C(CH₃)₂-CO), 1.92 (sept, 1H, CH₂-CH(CH₃)₂), 3.06 (t, 2H, CH₂-CH₂-Aryl), 3.10 (d, 2H, S-CH₂-CH), 3.60 (q, 2H, NH-CH₂-CH₂), 6.89 (s, 1H, Aryl- H_k), 7.38 (t, 1H, CH₂-NH-CO), 7.55 (s, 1H, Aryl- H_n).

<u>¹³C NMR (75 MHz, CDCl₃)</u>:

22.1 (C_a), 25.7 (C_f), 27.8 (C_b), 31.3 (C_i), 42.1 (C_h), 45.5 (C_c), 56.7 (C_e), 112.2 (C_n), 117.1 (C_k), 127.8 (C_j), 141, (C_o), 143.6 (C_m), 149.7 (C_l), 174.7 (C_g), 220.3 (C_d).

<u>HRMS (ESI)</u>: m/z calcd. for $C_{17}H_{24}N_2O_5S_3Na$ [M+Na]⁺ 455.074, Found 455.073.

Typical procedure for the polymerization of monomer using functionalized ND-CTA or Boro-CTA

Monomer	Abbreviation	Time of polymerization	Purification
Dimethylacrylamide	DMAc	1h	Precipitation in Et ₂ O
N-isopropylacrylamide	NIPAM	1h30	Precipitation in Et ₂ O
Styrene	Sty	48h	Precipitation in MeOH
n-butyl acrylate	<i>n</i> BuA	1h	Precipitation in MeOH/H ₂ O (50/50)
Tert-butyl acrylate	tBuA	1h	Precipitation in MeOH/H ₂ O (50/50)
Methyl Acrylate	MA	40min	Precipitation in MeOH/H ₂ O (50/50)
Di(ethylene glycol) methyl ether acrylate	DEGA	2h	Dialysis in acetone
Poly(ethylene glycol) methyl ether acrylate $(M_n=480 \text{ g.mol}^{-1})$	PEGA	2h	Dialysis in acetone

Tableau S1. Method of purification of polymers and time of polymerization

From Figure 2A could be extracted the apparent rate constants (s⁻¹) of the RAFT polymerizations involving **Boro-CTA** with DMAc (8x10⁻⁴), NIPAM (3x10⁻⁴), MA (5x10⁻⁴), PEGA (4x10⁻⁴), DEGA (6x10⁻⁴), *n*BuA (11x10⁻⁴) and *t*BuA (6x10⁻⁴).

From Figure 3A could be extracted the apparent rate constants (s⁻¹) of the RAFT polymerizations involving **ND-CTA** with DMAc (8x10⁻⁴), NIPAM (3x10⁻⁴), MA (26x10⁻⁴), PEGA (3x10⁻⁴), DEGA (4x10⁻⁴), *n*BuA (4x10⁻⁴) and *t*BuA (8x10⁻⁴).

<u>¹H NMR (300 MHz, Acetone-*d*₆), δ (ppm/TMS)</u>: 7.58 (H_o); 7.12 (H_l); 6.92 (H_h); 4.26 (H_s); 3.87 (H_t); 3.62 (H_u); 3.32 (H_v); 2.51 (H_q); 1.77 (H_r); 1.15 (H_e); 1.09 (H_a)

Figure S3. ¹H NMR spectrum of typical ND-PPEGA (*M_{n,NMR}* = 12000 g.mol⁻¹, *Đ*=1.2)

Figure S4. ¹H NMR spectrum of typical ND-PDEGA ($M_{n,NMR}$ = 17000 g.mol⁻¹, \mathcal{D} =1.2)

 $\frac{^{1}\text{H NMR (300 MHz, D_{2}\text{O}), \delta (ppm/TMS)}}{3.69+3.61 (H_{u}); 3.38 (H_{v}); 2.43 (H_{r}); 1.77 (H_{q}); 1.07 (H_{a+e})}; 6.87 (H_{h}); 4.26 (H_{s}); 3.75 (H_{t}); 3.69+3.61 (H_{u}); 3.38 (H_{v}); 2.43 (H_{r}); 1.77 (H_{q}); 1.07 (H_{a+e})}$

Figure S5. ¹H NMR spectrum of typical ND-PNIPAM ($M_{n,NMR}$ = 4400 g.mol⁻¹, \mathcal{D} =1.2)

<u>¹H NMR (300 MHz, aceton-*d*₆), δ (ppm/TMS)</u>: 7.0 (H_s+Ar*H*); 3.87 (H_u); 3.2 (H_j); 2.12 (H_r); 1.51 (H_q); 1.02 (H_t); 0.89 (H_{a+e})

Figure S6. ¹H NMR spectrum of typical Boro-PMA ($M_{n,NMR}$ = 4600 g.mol⁻¹, \mathcal{D} =1.1) ¹H NMR (300 MHz, DMSO- d_6), δ (ppm/TMS): 7.97 (H₁); 7.76 (H_n); 7.38 (H_{j+m}); 5.04 (H_h); 3.75 (H_s); 2.25 (H_r); 1.62 (H_q); 1.09 (H_e); 0.97 (H_a)

Figure S7. ¹H NMR spectrum of typical Boro-PnBuA ($M_{n,NMR}$ = 3700 g.mol⁻¹, \mathcal{P} =1.1) ¹H NMR (300 MHz, DMSO- d_6), δ (ppm/TMS): 7.99 (H₁); 7.74 (H_n); 7.36 (H_{j+m}); 5.15 (H_h); 3.99 (H_s); 2.28 (H_r); 1.55+1.32 (H_{q+t+u}); 1.09 (H_e); 0.99 (H_a); 0.90 (H_v)

Figure S8. ¹H NMR spectrum of typical Boro-PNIPAM ($M_{n,NMR}$ = 4500 g.mol⁻¹, \mathcal{D} =1.2)

 $\frac{^{1}\text{H NMR (300 MHz, aceton-}d_{6}), \delta (\text{ppm/TMS})}{1.02 (\text{H}_{t}); 0.88 (\text{H}_{a})} \approx 6.75 (\text{H}_{s} + \text{Ar}H); 3.86 (\text{H}_{u}); 2.11 (\text{H}_{r}); 1.29 (\text{H}_{q});$