Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Copyright The Royal Society of Chemistry, 1998

Supplementary data

Coordination and Catalysis of Zn²⁺ in Epoxy-Based Vitrimers

A. Demongeot,^a S.J. Mougnier,^a S. Okada,^b C. Soulié-Ziakovic^a and F. Tournilhac*^a

^a Laboratoire Matière Molle et Chimie, UMR 7167 ESPCI-CNRS, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris ESPCI ParisTech, PSL Research University, 10 rue Vauquelin 75005 Paris, France. E-mail : francois.tournilhac@espci.fr

^bDepartment of Chemistry, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.

1. Materials - Fatty acids

Pripol® 1040 was kindly provided by Croda. This material, usually referred as trimer acid is actually a complex mixture of polycarboxylic acids produced from coupling reactions of bio-based unsaturated fatty acids (mainly oleic and linoleic) and partially hydrogenated. According to the manufacturer's specifications, Pripol 1040 contains 77 wt% of tricarboxylic acid trimers and 23 wt% of dicarboxylic acid dimers (70 mol% and 30 mol% respectively). IR and NMR data are consistent with the cycloaliphatic structure generally accepted [1-3]. Isomers and acyclic dimers may be also present.[4-6] Feed ratios in epoxy-acid reactions were calculated on the basis of the acid value given by the manufacturer, which corresponds to an equivalent weight of 296 g per mole of COOH functions.

δ (ppm) / TMS	attribution	integral found	expected
0.89 (triplet)	CH ₃)	
expected: 0.80 to 1.25	cyclic CH (axial)		
expected: 1.13 to 1.18	cycle— $C\underline{H}_2$ — $(CH_2)_n$ -		
1.26	CH ₂ (chain)	\rangle 76	74 to 82 *
1.63	С <u>Н</u> 2—СН2—СООН		
1.5 to 1.8	cyclic CH (equatorial)		
2.0 and 2.5	allylic CH)	
expected 5.10 to 5.40	-C <u>H</u> =CH-	0.8	0 to 8 *
2.34 (triplet)	-С <u>Н</u> ₂ -СООН	5.4	5.4
9.3 (very broad)	-COO <u>H</u>	1.3	2.7

Table S1. ¹H NMR (CDCl₃) bands attribution, *depending on residual unsaturation

wavelength (cm ⁻¹)	attribution [4]	
2250-3500	v _{O-H}	acid
2953 (shoulder)	v _a CH ₃	
2922	$\nu_a CH_2$	
2870 (shoulder)	v _s CH ₃	
2853	$v_s CH_2$	
1707	v _{C=O}	acid
1461	δ CH ₂	scissoring
1413	$v_{C-O} + \delta_{OH}$ comb.	acid
1375	$\delta_s CH_3$	
1285 and 1238	v _{C-0}	acid (H-bond dimerized)
1119	ν _{C-O}	acid (not dimerized)
933	δ _{OH}	out-of-plane bending
724	δ (CH ₂) _n	rocking

Table S2. ATR-IR bands attribution

2. Fatty acid-based zinc dicarboxylate (compound 1)

Figure S1. a) ATR-IR spectrum of starting fatty acid (black) and fatty acid-based zinc dicarboxylate 10 mol% (red), b) ATR signal difference.

3. Vitrimer synthesis (compound 2)

Figure S2. Carbonyl (1800-1500 cm⁻¹) and epoxy (930-890 cm⁻¹) regions of FTIR spectra during the curing of epoxy-acid networks at 130°C. Spectra were taken every 3 min.

Figure S3. a) ATR-IR spectra of 5 mol% Zn-catalyzed epoxy vitrimer (black) and 10 mol% Zn-catalyzed vitrimer (red). b) ATR-IR spectrum difference A(10 %) - A(5 %).

4. 3-phenoxy-1,2-propanediol (compound 3)

Figure S4. NMR of compound 3 in CDCl₃

5. 3-phenoxypropylene diacetate (compound 4)

Figure S5. NMR of compound 4 in CDCl₃

6. Catalysis

Figure S6. Transesterification kinetics results at 150°C for the di-ester and di-hydroxy mix model molecules without metal catalyst added.

7. X-ray powder diffraction

X-ray powder diffraction (XRD) was performed using a Philips X'Pert diffractometer. Co K α radiation (1.79Å) was used at 40 kV and 40 mA. A counting time of 25 s per 0.05 ° step was used for the 2 θ range 15–90 °.

Figure S7. a) X-ray powder diffraction pattern of zinc acetate dihydrate and simulated (bottom, red) based on the crystal structure proposed by Ishioka[7] b) X-ray powder diffraction pattern of anhydrous zinc acetate and simulated (bottom, red) based on the crystal structure proposed by Clegg[8]

8. EXAFS Spectroscopy

Figure S8. X-Ray absorption spectra (μ(E) plots) of anhydrous zinc acetate (top, red), zinc acetate dihydrate (middle, blue) and the 10 mol% Zn-catalyzed epoxy-acid vitrimer system (bottom, black).

Figure S9. Radial structure functions of anhydrous zinc acetate (top), zinc acetate dihydrate (middle) and the 10 mol% Zn-catalyzed epoxy-acid vitrimer system (bottom).

8. Shift in carbonyl vibration by coordination with Zn2+

In order to estimate the IR peak shift by zinc coordination, four complexes with Zn^{2+} and two molecules without Zn^{2+} were calculated (Figure S10, Table S3). The calculated shifts for Zn...O=C coordination, with or without chelation are consistent with experimental data.

Figure S10. Possible complexation models of an ester with a zinc cation.

	model complex	ω	shift	O-Zn distance [Å]
m 1	w/o Zn ²⁺	1750	-	NA
m 2	Zn-carbonyl (Structure I)	1373 1589	161	1.818
m 3	Zn-ester	1760	-10	2.800
m 4	model structure of epoxy vitrimer		_	NA
m 5	chelating (5-membered)		-103	1.826 (alcoxy) 2.018 (ester)
m 6	chelating (7-membered)	1581	169	1.812 (alcoxy) 1.921 (carbonyl)

Table S3. Shift in calculated IR frequencies (ω , cm⁻¹) of carbonyls by Zn coordination.

Calculations were performed with a Gaussian 09 program package.[9] The density functional theory (DFT) method was employed using M06.[10] Structures were optimized with a basis set consisting of the LANL2DZ basis set including a double-zeta valence basis set with the Hay and Wadt effective core potential (ECP).[11] Each stationary point was adequately characterized by normal coordinate analysis (no imaginary frequencies for an equilibrium structure).

9. Coordination of Zn2+ by the β-hydroxy-alkoxide anion

In the particular case of β -diol strucures, produced by transesterification, the coordination of Zn+ is examined (Figure 5). The calculation technique is the same as above. Chelation is favored.

Figure S11. Complexation models of an ethylene glycol molecule and its anion with a zinc cation.

	model complex	Ŵ	O-Zn distance [Å]	C-O distance [Å]
m7	chelating to Zn ²⁺	819 (C-OH) 1053 (C-O⁻)	1.984 (alcohol) 1.828 (alcoxy)	1.509 (C-OH) 1.453 (C-O ⁻)
m8	bonding to Zn ²⁺ without chelation (unstable structure)	1014 (C-O⁻) 1143 (C-OH)	1.823 (alcoxy)	1.394 (C-OH) 1.428 (C-O ⁻)

Table S4. Calculated IR frequencies (ω , cm⁻¹) of C-O bond by Zn coordination.

10. Calculated Coordinates

SCF Done: $E(RM06) = -268.183809469$ A.U. after 13 cycles					
Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-0.789544	-2.554025	-0.403
2	1	0	-0.278229	-3.368703	-0.923377
3	1	0	-0.428667	-1.614529	-0.831401
4	1	0	-1.86703	-2.637595	-0.544683
5	6	0	-0.466303	-2.601462	1.061594
6	8	0	-1.271996	-2.69337	1.992786
7	8	0	0.891216	-2.525049	1.260654
8	6	0	1.352463	-2.554218	2.642793
9	1	0	1.072274	-3.499468	3.116623
10	1	0	2.435333	-2.452662	2.588273
11	1	0	0.90937	-1.729736	3.208777

Table S5. Compound m1 (w/o Zn²⁺)

SCF Done: $E(RM06) = -332.908344000$ A.U. after 14 cycles					
Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-0.738877	-2.774	-0.526454
2	1	0	-0.425153	-3.791724	-0.776527
3	1	0	-0.209473	-2.117549	-1.231176
4	1	0	-1.81377	-2.671579	-0.685117
5	6	0	-0.324853	-2.443451	0.857039
6	8	0	0.815877	-2.860577	1.25606
7	6	0	1.484503	-2.639685	2.586644
8	1	0	0.885255	-3.134842	3.352075
9	1	0	2.454143	-3.115747	2.464633
10	1	0	1.578424	-1.565294	2.750954
11	8	0	-1.055922	-1.726047	1.700936
12	30	0	-2.600284	-0.815375	1.999253

Table S6. Compound m2 (Zn-carbonyl)

SCF Done:	E(RM06) =	-333.651594550	A.U. after	12 cycles
-----------	-----------	----------------	------------	-----------

Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-0.882763	-2.484442	-0.345629
2	1	0	-0.15232	-2.973969	-0.997222
3	1	0	-0.844357	-1.411019	-0.558405
4	1	0	-1.882901	-2.865106	-0.553076
5	6	0	-0.537253	-2.732278	1.092824
6	8	0	-1.262638	-3.23206	1.95426
7	6	0	1.228454	-2.483245	2.732807
8	1	0	1.207158	-3.539696	3.012507
9	1	0	2.250673	-2.10122	2.728742
10	1	0	0.600921	-1.91484	3.424374
11	30	0	2.57625	-0.976522	-0.283361
12	8	0	0.749924	-2.314002	1.364549

Table S7. Compound m3 (Zn-ester)

Copyright	The Royal	Society of	Chemistry,	1998
-----------	-----------	------------	------------	------

SCF Done: $E(RM06) = -727.908719412$	A.U. after	15 cycles
--------------------------------------	------------	-----------

Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	X	Y	Ζ
1	6	0	-1.975689	-0.622175	0.219614
2	1	0	-2.4587	-1.610018	0.125438
3	1	0	-1.988434	-0.310267	1.27461
4	6	0	-3.973811	0.654819	-0.30693
5	6	0	-4.706027	0.070506	0.738377
6	6	0	-4.561953	1.623644	-1.135866
7	6	0	-6.036526	0.467755	0.945797
8	1	0	-4.262476	-0.677533	1.388601
9	6	0	-5.886194	2.007376	-0.917718
10	1	0	-3.961161	2.05564	-1.92975
11	6	0	-6.632905	1.431286	0.125225
12	1	0	-6.604167	0.01754	1.755182
13	1	0	-6.337996	2.758355	-1.558952
14	1	0	-7.661885	1.732851	0.293239
15	8	0	-2.657809	0.336263	-0.607959
16	6	0	-0.536743	-0.671003	-0.251869
17	1	0	-0.511503	-0.518508	-1.340935
18	6	0	0.104599	-2.014743	0.07453
19	1	0	-0.395362	-2.834684	-0.458773
20	1	0	0.07117	-2.193129	1.159114
21	8	0	0.166659	0.378717	0.435315
22	8	0	1.480183	-1.877512	-0.375867
23	6	0	2.442563	-2.850313	-0.15369
24	8	0	3.580124	-2.647642	-0.563328
25	6	0	2.006206	-4.090987	0.590419
26	1	0	1.692775	-3.843829	1.610438
27	1	0	1.167609	-4.585796	0.089744
28	1	0	2.852413	-4.776013	0.635478
29	1	0	1.085831	0.433489	0.104912

 Table S8. Compound m4 (model structure of epoxy vitrimer)

SCF Done: $E(RM06) = -447.217644252$ A.U. after 16 cycles					
Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	2.330919	-0.787785	-0.099781
2	1	0	2.239776	-0.86781	-1.189884
3	1	0	3.060772	-1.526204	0.246877
4	6	0	0.989136	-1.087134	0.578949
5	1	0	0.474468	-1.945325	0.142771
6	1	0	1.083596	-1.204571	1.661504
7	8	0	0.098805	0.124538	0.377851
8	8	0	2.841355	0.52649	0.263654
9	6	0	-1.331423	-0.087756	0.243546
10	6	0	-2.039967	1.219919	0.098126
11	1	0	-1.694469	1.755902	-0.793255
12	1	0	-3.109665	1.040281	-0.009531
13	1	0	-1.889356	1.845404	0.985459
14	8	0	-1.763021	-1.216413	0.261971
15	30	0	1.412756	1.655647	0.40541

Table S9. Compound m5 (chelating (5-membered))

SCF Done: $E(RM06) = -447.253363393$ A.U. after 14 cycles					
Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	2.222016	-0.487288	-0.234159
2	1	0	1.812909	-1.491399	-0.412733
3	1	0	3.262117	-0.606796	0.092356
4	6	0	1.474801	0.177605	0.923925
5	1	0	1.821444	-0.204677	1.883809
6	1	0	1.583838	1.27029	0.905108
7	8	0	0.004173	-0.137976	1.006674
8	8	0	2.280554	0.285716	-1.449199
9	6	0	-0.957513	0.359442	0.253526
10	6	0	-2.33807	0.099277	0.73409
11	1	0	-2.669899	0.957855	1.330802
12	1	0	-3.022373	-0.000268	-0.109211
13	1	0	-2.363451	-0.783344	1.37352
14	8	0	-0.743562	1.033947	-0.81484
15	30	0	0.780498	1.150423	-1.978931

 Table S10. Compound m6 (chelating (7-membered))

SCF Done: $E(RM06) = -294.689929342$ A.U. after 9 cycles					
Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-2.711038	1.403331	-0.697969
2	1	0	-2.427223	1.15017	-1.727231
3	1	0	-3.745499	1.75983	-0.698063
4	6	0	-2.626059	0.159722	0.202231
5	1	0	-3.00472	-0.731408	-0.301573
6	1	0	-3.121988	0.31199	1.164203
7	8	0	-1.877034	2.481614	-0.196394
8	8	0	-1.165186	-0.065469	0.505587
9	30	0	-0.346848	1.741782	0.475489
10	1	0	-0.938626	-0.979714	0.749294

Table S11. Compound m7 (chelating to Zn^{2+})

SCF Done:	E(RM06	= -294.630638439	A.U. after	8 cycles
-----------	--------	------------------	------------	----------

Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	6	0	-0.996648	1.03303	0.130176
2	1	0	-1.409441	1.764071	-0.579046
3	1	0	-1.331985	1.266743	1.145424
4	6	0	-1.515688	-0.373807	-0.254648
5	1	0	-0.725838	-1.089555	0.187194
6	1	0	-1.504195	-0.536256	-1.341239
7	8	0	0.422744	1.122495	0.002692
8	8	0	-2.746071	-0.609618	0.356314
9	30	0	1.353207	-0.403365	0.36262
10	1	0	-3.412164	-1.070015	-0.189133

Table S12. Compound **m8** (bonding to Zn^{2+} without chelation)

11. References

- [1] E. Hablot, B. Donnio, M. Bouquey, L. Avérous, *Polymer*, 2010, **51**, 5895.
- [2] S. Çavuş, A. Gürkaynak, Polym. Adv. Technol., 2006, 17, 30.
- [3] D. Montarnal, P. Cordier, C. Soulié-Ziakovic, F. Tournilhac, L. Leibler, J. Polym. Sci. A: Polym. Chem., 2008, 46, 7925.
- [4] D. H. McMahon, E. P. Crowell, J. Am. Oil Chem. Soc., 1974, 51, 522.
- [5] E. C. Leonard, J. Am. Oil Chem. Soc., 1979, 56, 782A.
- [6] M. Arca, B. K. Sharma, N. P. J. Price, J. M. Perez, K. M. Doll, J. Am. Oil Chem. Soc., 2012, 89, 987.
- [7] T. Ishioka, Y. Shibata, M. Takahashi, I. Kanesaka, Y. Kitagawa T. Nakamura, *Spectroc. Acta A*, 1998, 54, 1827.
- [8] W. Clegg, I. Little, B.P. Straughan, Acta Crystallogr. Sect. C, 1986, 42, 1701.
- [9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
- Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J.
- Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
- Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.
- Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
- A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B.
- Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
- C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
- Dannenberg, S. Dapprich, A D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox,
- Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford CT, 2010.
- [10] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- [11] W. R. Wadt, P. J. Hay, J. Chem. Phys., 1985, 82, 299.