## **Electronic Supplementary Information**

Efficient synthesis of 2-methylene-4-phenyl-1,3-dioxolane, a cyclic ketene acetal for controlling the NMP of methyl methacrylate and conferring tunable degradability

Johanna Tran,<sup>1</sup> Elise Guégain,<sup>1,§</sup> Nada Ibrahim,<sup>1,§</sup> Simon Harrisson,<sup>2</sup> Julien Nicolas<sup>1,\*</sup>

<sup>1</sup>Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.

<sup>2</sup>Université de Toulouse, CNRS, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique UMR 5623, 118 route de Narbonne, F-31062 Toulouse, France.

§ Equally contributing authors

\* To whom correspondence should be addressed.

julien.nicolas@u-psud.fr

Tel.: +33 1 46 83 58 53; Fax: +33 1 46 83 55 11



Figure S1. Representative <sup>1</sup>H NMR spectrum in CDCl<sub>3</sub> in the 3.2–8.0 ppm region of MPDL.



Figure S2. Representative <sup>13</sup>C NMR spectrum in CDCl<sub>3</sub> in the 45–170 ppm region of MPDL.



**Figure S3**. SEC traces taken at different time intervals during the NMP of MMA and MPDL in toluene initiated by the BlocBuilder alkoxyamine at 90 °C, as a function of the initial amount of MPDL: (a) expt. 1 ( $f_{MPDL,0} = 0.1$ ); (b) expt. 2 ( $f_{MPDL,0} = 0.2$ ); (c) expt. 3 ( $f_{MPDL,0} = 0.4$ ); (d) expt. 4 ( $f_{MPDL,0} = 0.7$ ).



**Figure S4**. <sup>1</sup>H NMR spectra in CDCl<sub>3</sub> of the purified copolymers resulting from the NMP of MMA and MPDL in toluene initiated by the BlocBuilder alkoxyamine at 90 °C, as a function of the initial amount of MPDL: (a) expt. **1**' ( $f_{MPDL,0} = 0.1$ ); (b) expt. **2**' ( $f_{MPDL,0} = 0.2$ ); (c) expt. **3**' ( $f_{MPDL,0} = 0.4$ ); (d) expt. **4**' ( $f_{MPDL,0} = 0.7$ ).



Figure S5. Comparison of modeled and experimental data for (a) the monomer feed ratio and (b) the cumulative copolymer composition as a function of conversion. Modeled data were obtained by nonlinear least squared fitting of the integrated copolymer composition equation to the experimental data, yielding reactivity ratios of  $r_{\text{MPDL}} = 0.01$ ,  $r_{\text{MMA}} = 4.0$ .



**Figure S6**. 95% joint confidence region for reactivity ratios of MPDL and MMA, calculated by the 'visualisation of the sum of least squares space' method of van den Brink et al.<sup>1</sup> The red point represents the best estimate of  $r_{\text{MPDL}} = 0.01$ ,  $r_{\text{MMA}} = 4.0$ .



**Figure S7.** Experimental  $T_g$  values of the different copolymers as function of the weight fraction of MPDL in the copolymer, and curve of the Fox equation<sup>2</sup>  $(1/T_g = w_{PMPDL}/T_{g,PMPDL} + w_{MMA}/T_{g,PMMA}$ , with w and  $T_g$  the weight fraction and  $T_g$  of each homopolymer) with an estimated  $T_g$  for PMDPL of 45 ± 10 °C.

## References

- 1. Van Den Brink, M.; Van Herk, A. M.; German, A. L. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3793-3803.
- 2. Fox, T. G. Bull. Am. Phys. Soc. 1956, 1, 123-125.