# Ternary Organic-Inorganic Nanostructured Hybrid Materials by Simultaneous Twin Polymerization

J. Weißhuhn<sup>a</sup>, T. Mark<sup>b</sup>, M. Martin<sup>a</sup>, P. Müller<sup>b</sup>, A. Seifert<sup>a</sup> and S. Spange<sup>a</sup>

### **Supplementary Material**

Table of content:

- 1. Twin polymerization of 2a-d
  - 1.1 DSC measurements of the twin monomers with and without catalyst
    - 1.2 Twin polymerization experiments of 2a-d and extraction of the hybrid materials
      - 1.3 <sup>29</sup>Si-{<sup>1</sup>H} CP-MAS spectra
        - 1.4 HAADF-STEM
- 2. Simultaneous twin polymerization of 1 and 2a-d
  - 2.1 DSC measurements
    - 2.2 STP experiments and extraction of the hybrid materials
      - 2.2.1 <sup>29</sup>Si-{<sup>1</sup>H} CP-MAS spectra
      - 2.3 Post curing
        - 2.4 Mechanical properties nanoindentation measurements

<sup>&</sup>lt;sup>a.</sup> Department of Polymer Chemistry, Institute of Chemistry, Technische Universität Chemnitz, Strasse der Nationen 62, D-09111 Chemnitz, Germany, Email: Stefan.spange@chemie.tu-chemnitz.de

<sup>&</sup>lt;sup>b.</sup> BASF SE, Carl-Bosch Strasse 38, D-67056 Ludwigshafen, Germany

*<sup>†</sup>* Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

# 1. Twin polymerization of 2a-d

### 1.1 DSC measurements of the twin monomers with and without catalyst

The thermal behavior of TM's **2a-d** in the presence or absence of catalysts was studied by means of DSC measurements.



| monomer | T <sub>onset, endo</sub><br>[°C] | T <sub>onset,exo</sub><br>[°C] |
|---------|----------------------------------|--------------------------------|
| 1       | 77                               | 197                            |
| 2a      | 147                              | -                              |
| 2b      | 169                              | -                              |
| 2c      | 73                               | -                              |
| 2d      | -                                | -                              |

Figure S1 DSC of monomers 1, 2a, 2b, 2c and 2d.



| experiment      | T <sub>onset, endo</sub><br>[°C] | T <sub>onset,exo</sub><br>[°C] |
|-----------------|----------------------------------|--------------------------------|
| <b>2a</b> + TFA | -                                | 83                             |
| <b>2b</b> + TFA | -                                | 107;226                        |
| <b>2c</b> + TFA | 66                               | 217                            |
| <b>2d</b> + TFA | 53                               | -                              |

**Figure S2** DSC of the monomers **2a**, **2b**, **2c** and **2d** using trifluoroacetic acid (TFA) as a catalyst (molar ratio as given in the key).



| experiment      | T <sub>onset, endo</sub><br>[°C] | T <sub>onset,exo</sub><br>[°C] |
|-----------------|----------------------------------|--------------------------------|
| <b>2a</b> + DBU | -                                | 134;202                        |
| <b>2b</b> + DBU | 46                               | 125                            |
| <b>2c</b> + DBU | 73                               | 109                            |
| <b>2d</b> + DBU | -                                | 93; 128                        |

**Figure S3** DSC of the monomers **2a**, **2b**, **2c** and **2d** using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst (molar ratio as given in the key).

#### 1.2 Twin polymerization experiments of 2a-d and extraction of the hybrid materials

Thermally induced TP was not performed because DSC measurements of **2a-d** did not show exothermic peaks which would indicate a polymerization (Figure S1, see insert Table). Acid (trifluoroacetic acid) and base (1,8-diazabicyclo[5.4.0]undec-7-ene) catalyzed TP of **2a-c** and base catalyzed TP of **2d** gave solid and transparent hybrid materials (Table S2). The materials obtained from monomer **2c** with acid and base catalysis are completely soluble in DCM as determined by extraction experiments. Extraction experiments give the possibility to determine amount of conversion and study structure of side reactions and oligomeric products which are removable from the hybrid material. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of the extracts show oligomers of phenolic resin and polysiloxane. According to DSC measurements, the polymerization requires higher temperatures (Figure S2 and S3). The other materials also show high extractable contents between 37 to 80 %. However, the polydiarlkyl(aryl) siloxane component in the hybrid material is not completely soluble in DCM which is verified for the DBU catalyzed TP of **2b** by <sup>29</sup>Si-{<sup>1</sup>H</sup>}- CP-MAS-NMR (Figure S4).

| manamar | T <sub>onset, exo</sub> [°C] |     |       |  |
|---------|------------------------------|-----|-------|--|
| monomer | thermally induced            | DBU | TFA   |  |
| 1       | 197                          | 130 | 25    |  |
| 2a      | n. o.                        | 134 | 83    |  |
| 2b      | n. o.                        | 125 | 107   |  |
| 2c      | n. o.                        | 109 | 217   |  |
| 2d      | n. o.                        | 94  | n. o. |  |

**Table S1**. Characteristic trigger temperatures for the thermally induced, DBU and TFA catalyzed TP of monomers **1** and **2a–d** as determined by DSC measurements.

**Table S2**. Acid and base catalyzed twin polymerization of **2a**–**d** using TFA and DBU, respectively. Extraction experiments were performed with DCM for 30 h.

| catalyst | monomer | monomer/<br>catalyst<br>ratio [n%] | time  | tempera-<br>ture | picture    | mass loss<br>by<br>extraction | C [%]<br>before<br>extraction | C [%]<br>after<br>extraction |
|----------|---------|------------------------------------|-------|------------------|------------|-------------------------------|-------------------------------|------------------------------|
|          | 2a      | 20:1                               | 4 h   | 85 °C            |            | 37 %                          | 64.94                         | 60.48                        |
| TFA      | 2b      | 20:1                               | 6 h   | 85 °C            |            | 47 %                          | 68.77                         | 71.34                        |
|          | 2c      | 20:1                               | 6 h   | 85 °C            |            | 100 %                         | 72.96                         | -                            |
|          | 2a      | 50:1                               | 40 h  | 140 °C           | $\bigcirc$ | 37 %                          | 62.74                         | 67.23                        |
|          | 2b      | 50:1                               | 75 h  | 140 °C           |            | 74 %                          | 66.32                         | 67.03                        |
| DBO      | 2c      | 50:1                               | 123 h | 140 °C           |            | 100 %                         | 72.44                         | -                            |
|          | 2d      | 50:1                               | 200 h | 140 °C           | 43         | 80 %                          | 70.89                         | 70.80                        |

### 1.3 <sup>29</sup>Si-{<sup>1</sup>H} CP-MAS spectra



**Figure S4** <sup>29</sup>Si-{<sup>1</sup>H} CP-MAS spectra of the hybrid material DBU/**2b**100 before and after extraction with DCM.

### 1.4 HAADF-STEM



Figure S5 HAADF-STEM of the hybrid material derived from **2b** with TFA as a catalyst.

# 2. Simultaneous twin polymerization of 1 and 2a-d

### 2.1 DSC measurements



| experiment                | T <sub>onset, endo</sub><br>[°C] | T <sub>onset,exo</sub><br>[°C] |
|---------------------------|----------------------------------|--------------------------------|
| <b>2a + 1</b> +TFA        | -                                | 30; 47                         |
| <b>2b</b> + <b>1</b> +TFA | -                                | 72                             |
| 2c + 1 +TFA               | 66; 80                           | -                              |
| 2d + 1 +TFA               | -                                | 80                             |

**Figure S6**. Differential scanning calorimetry (DSC) of STP of the monomer mixtures **n** with monomer **1** using TFA as a catalyst (molar ratio as given in the key).



| experiment         | T <sub>onset, endo</sub><br>[°C] | T <sub>onset,exo</sub><br>[°C] |
|--------------------|----------------------------------|--------------------------------|
| <b>2a + 1</b> +DBU | -                                | 106                            |
| 2b + 1 +DBU        | -                                | 108                            |
| 2c + 1 +DBU        | 70                               | 107                            |
| 2d + 1 +DBU        | 46                               | 107                            |

**Figure S7** DSC of STP of the monomer mixtures **2a**, **2b**, **2c** and **2d** with monomer **1** using DBU as a catalyst (molar ratio as given in the key).

### 2.2 STP experiments and extraction of the hybrid materials

**Table S3** TFA catalysed STP of **1** and **2a**–**d** at 85 °C for 4 h using a concentration of catalyst of M:I = 20:1 [n%]. The naming of the samples is based on the specific monomer **2** used for the polymerization. The following number indicates the molar ratio of monomer **2** used in the mixture. Extraction experiments of the hybrid materials were performed with DCM for 30 h. The table also shows the appearance of the sample as well as the amount of C determined through elemental analysis before and after extraction.

| experiment    | sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mass loss by<br>extraction[%] | C [%] before<br>extraction | C [%] after<br>extraction |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------|
| <b>2a</b> 90* | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                            | 59.12                      | 56.82                     |
| <b>2a</b> 75  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | 58.88                      | 56.93                     |
| <b>2a</b> 50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                            | 58.66                      | 57.07                     |
| <b>2a</b> 25  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                             | 59.17                      | 58.12                     |
| <b>2b</b> 90  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32                            | 67.92                      | 69.98                     |
| <b>2b</b> 70  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                            | 65.23                      | 65.46                     |
| <b>2b</b> 50  | <b>U</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                            | 63.86                      | 63.80                     |
| <b>2b</b> 40  | (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                            | 61.61                      | 60.24                     |
| <b>2b</b> 15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                             | 58.99                      | 58.24                     |
| <b>2b</b> 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                             | 59.28                      | 58.22                     |
| <b>2c</b> 80  | and the second s | 87                            | 70.36                      | 70.55                     |
| <b>2c</b> 65  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76                            | 68.21                      | 66.69                     |
| <b>2c</b> 50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                            | 66.19                      | 64.79                     |
| <b>2c</b> 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                            | 64.81                      | 63.54                     |
| <b>2c</b> 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                             | 58.77                      | -                         |
| <b>2d</b> 80  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                           | 68.20                      | -                         |
| <b>2d</b> 65  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                            | 66.79                      | 55.48                     |
| <b>2d</b> 50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58                            | 65.12                      | 57.54                     |
| <b>2d</b> 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48                            | 64.46                      | 64.47                     |
| <b>2d</b> 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                            | 59.01                      | 61.56                     |

\*7h polymerization time

**Table S4**. DBU catalysed STP of **1** and **2a**–**d** at monomer ratio of 50:50 n%. The naming of the samples is based on experimental parameters used for the polymerization. The first part of the name represents the molar ratio of monomers to catalyst (M:I) like 50:1 n% is abbreviated as 50. The next part indicates the specific monomer **2** and the molar ratio of that monomer used in the mixture. Extraction experiments of the hybrid materials were performed with DCM for 30 h. The table also shows the appearance of the sample as well as the amount of C determined through elemental analysis before and after extraction.

| experiment        | sample | mass loss<br>extraction[%] | C [%] before<br>extraction | C [%] after<br>extraction |
|-------------------|--------|----------------------------|----------------------------|---------------------------|
| 50/ <b>2a</b> 50  |        | 2                          | 60.63                      | 60.89                     |
| 100/ <b>2a</b> 50 |        | -                          | 59.46                      | -                         |
| 300/ <b>2</b> a50 |        | -                          | 58.59                      | -                         |
| 50/ <b>2b</b> 50  |        | 14                         | 65.24                      | 64.11                     |
| 100/ <b>2b</b> 50 | H      | 25                         | 64.57                      | 63.60                     |
| 50/ <b>2c</b> 50  |        | 23                         | 67.75                      | 65.42                     |
| 100/ <b>2c</b> 50 |        | 28                         | 68.47                      | 67.20                     |
| 50/ <b>2d</b> 50  | R .    | 62                         | 65.43                      | 55.71                     |

### 2.2.1 <sup>29</sup>Si-{<sup>1</sup>H} CP-MAS spectra





#### 2.3 Post curing



**Figure S9**. DSC of hybrid materials produced from **1** and **2a–d** at a monomer ratio of 50:50 n% and a concentration of TFA of 20:1 n% (M:I) with two heating steps. Exothermic signals indicate post-curing of the hybrid network.



**Figure S10**. DSC of hybrid materials produced from **1** and **2a–d** at a monomer ratio of 50:50 n% and a concentration of DBU of 50:1 n% (M:I) with two heating steps. Exothermic signals indicate post-curing of the hybrid network.



**Figure S11**. DSC of the hybrid material **1** and **2b** polymerized for 3 h at 110 °C with different concentration of DBU (M:I = 50:1 n%; 100:1 n%). Two heating steps were performed. Exothermic signals indicate post-curing of the hybrid network.

### 2.4 Mechanical properties – nanoindentation measurements

**Table S5**. Young's modulus and hardness for the monolithic polymerization products of the STP for monomers **2a** and **2c** at a monomer ratio of 50:50 n% and for different monomer ratios of **1:2b** determined through nanoindentation measurements (poisson number estimated at 0.4).

| experiment   | F [mN] | Young's modulus<br>[GPa] | hardness<br>[MPa] |
|--------------|--------|--------------------------|-------------------|
| <b>2a</b> 50 | 5      | 5.4                      | 296.8             |
| <b>2b</b> 90 | 5      | 3.6                      | 173.6             |
| <b>2b</b> 70 | 5      | 4.7                      | 239.7             |
| <b>2b</b> 50 | 5      | 5.2                      | 254.2             |
| <b>2b</b> 40 | 5      | 5.4                      | 269.6             |
| <b>2b</b> 15 | 5      | 6.1                      | 344.0             |
| <b>2b</b> 10 | 5      | 6.1                      | 339.1             |
| <b>2c</b> 50 | 5      | 1.3                      | 42.3              |
| <b>2d</b> 50 | 5      | -                        | -                 |



**Figure S12**. Hardness and elastic modulus as function of the type of monomer **2** in the hybrid material from STP with the composition of **1**:**2** of 50:50 using TFA as catalyst (n= 23-27, error bars cover  $3\sigma$ ).