Supporting Information

Simultaneous Enhancement of Performance and Insensitivity to Active Layer

Thickness for OPVs by Functionalizing π-spacer's Side Chain

Dalei Yang^{a, b, c}, Tong Zhang^{a, b, c}, Xiaoli Zhao^{a, b}*, Guang Zeng^{a, b, c}, Zidong Li^{a, b, c},

Yumeng Tian^{a, b}, Fagui He^c, Jidong Zhang^a, Xiaoniu Yang^{a, b*}

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun 130022, P. R. China

^bPolymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun 130022, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, P.R. China

* Correspondence to: X.N. Yang (E-mail: <u>zhaoxiaoli@ciac.ac.cn</u>, <u>xnyang@ciac.ac.cn</u>)

Fig. S1 ¹H NMR spectrum of compound 1 in $CDCl_3$ at room temperature.

Fig. S2 ¹H NMR spectrum of compound 2 in CDCl₃ at room temperature.

Fig. S3 ¹H NMR spectrum of compound 3 in CDCl₃ at room temperature.

Fig. S4 ¹H NMR spectrum of compound 4 in CDCl₃ at room temperature.

Fig. S5 ¹H NMR spectrum of compound 5 in CDCl₃ at room temperature.

Fig. S6 ¹H NMR spectrum of compound 6 in CDCl₃ at room temperature.

Fig. S7 ¹³C NMR spectrum of compound 6 in CDCl₃ at room temperature.

Fig. S8 ¹H NMR spectrum of polymer PBTI3T-S in 1,2-Dichlorobenzene-d4 at 100 °C.

Fig. S9 TGA plots of PBTI3T-S and PBTI3T with a heating rate of 10 °C min⁻¹ under nitrogen atmosphere.

Fig. S10 B3LYP/6-31G** electronic density contours for PBTI3T-S trimer and PBTI3T trimer.

Fig. S11 (a) Hole-only I-V curves of PBTI3T-S/PC₇₁BM and PBTI3T/PC₇₁BM blend films. (b) Linear fits for the plots of ln(I/V^2) versus V^{1/2} based on the SCLC model.

Fig. S12 The variations of film thickness with (a) open circuit voltage, (b) shortcircuit current, (c) fill factor and (d) power conversion efficiency.

PCE^a **DIO Ratio** $V_{\rm oc}$ $J_{\rm sc}$ FF Thickness (%, v/v) $(mA cm^{-2})$ (nm) (%) (%) (V) 0 0.90 6.00 90 51.43 2.78 (2.48) 1 0.84 11.68 64.08 6.29 (6.06) 144 2 0.84 11.36 69.13 6.60 (6.51) 138 6.02 (5.79) 3 0.84 11.50 62.30 141

Table S1 Device characteristics of PBTI3T-S:PC₇₁BM PSCs with different DIO ratios. PBTI3T-S:PC₇₁BM = 1:1 (w/w), chlorobenzene as solvent and DIO (v/v) as processing additive.

^aAverage PCE in parentheses from 8 devices.

				C	
D/A Ratio(w/w)	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE ^a (%)	Thickness (nm)
2:1	0.88	10.83	53.61	5.11 (4.68)	250
1:1	0.84	11.36	69.13	6.60 (6.51)	144
1:2	0.84	11.31	70.84	6.73 (6.68)	204
1:3	0.82	10.58	62.43	5.42 (5.23)	193
1:4	0.84	9.08	58.91	4.49 (4.44)	199

Table S2 Device characteristics of PBTI3T-S:PC71BM PSCs with different D:A blendratios. Chlorobenzene as solvent and 2% DIO (v/v) as processing additive.

^aAverage PCE in parentheses from 8 devices.

Table S3 Device characteristics of Polymer: $PC_{71}BM$ PSCs with chloroform assolvent. The devices have the structure ITO/PEDOT: PSS/polymer: $PC_{71}BM/LiF/Al$. 2%DIO (v/v) as processing additive.

Polymer	D/A ratio (w/w)	V _{oc} (V)	$J_{\rm sc}$ (mA cm ⁻²)	FF (%)	PCE ^a (%)	Thickness (nm)
PBTI3T- S	1:1	0.86	11.50	72.00	7.12 (6.72)	105
PBTI3T	1:2	0.84	10.35	73.74	6.41 (6.09)	98

^aAverage PCE in parentheses from 8 devices.