Fiber-optic detection of nitroaromatic explosives with

solution-processable triazatruxene-based

hyperbranched conjugated polymer nanoparticles

Yuxiang Xu,^{ab} Xiaofu Wu,^a Yonghong Chen,^{ab} Hao Hang,^{ab} Hui Tong^{a*} and Lixiang Wang^{a*}

^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China. E-mail: chemtonghui@ciac.ac.cn; lixiang@ciac.ac.cn.

Supporting Information

Fig. S1.¹H NMR spectra of TATF8HBP (left) and TATSFHBP (right) in THF-d8.

Polymer		С	Н	Ν	0			
TATF8HBP	Calc.	87.19%	9.24%	3.57%	-			
	Anal.	84.55%	9.37%	3.61%	-			
TATSFHBP	Calc.	83.42%	9.06%	2.29%	5.23%			
	Anal.	82.72%	9.55%	2.33%	n.d.			

Fig. S2. FT-IR spectra of TATF8HBP, TATB3 and F8Br2.

Fig. S3. FT-IR spectra of TATSFHBP, TATB3 and SFBr2.

Fig. S4. TGA curves of TATF8HBP and TATSFHBP recorded under N_2 atmosphere.

Polymer	$\lambda_{abs}[nm]$		$\lambda_{em}[nm]$		QY		T _d	Eg ^{opt}	E _{HOMO} ^c	E _{LUMO} ^d
	sol.	film	sol.	film	sol. ^a	film ^b	[°C]	[ev]	[ev]	[ev]
TATF8HBP	385	385	443	470	34.2%	5.3%	411	2.85	-5.12	-2.27
TATSFHBP	392	392	445	462	58.3%	14.7%	380	2.80	-5.12	-2.32

Table S2. Physical properties of TATF8HBP and TATSFHBP.

^{*a*}In dilute THF, using 9,10-Diphenylanthracene in cyclohexene as standard. ^{*b*}Measured by the integrating sphere. ^{*c*}E_{HOMO}=-(E_{ox} - $E_{ox,Fc}$)-4.8 eV. ^{*d*}E_{LUMO}= E_g^{opt} + E_{HOMO} .

S	C TATF8HBP AS	CI TATSFHBP S C
S	CIAC UCAS	CLAC UCAS C
5	CIAC UCAS	CIAC UCAS C
S	CIAC UCAS	CIAC UCAS C
S	CIAC UCAS	CIAC UCAS C
S	CIAC UCAS	CIAC UCAS C

Fig. S5. Images of TATF8HBP and TATSFHBP films coated on quartz plates.

Fig. S6. Cyclic voltammograms of **TATF8HBP** and **TATSFHBP** in thin films measured in acetonitrile with TBAPF6 as supporting electrolyte.

Fig. S7. Stern-Volmer plots and fits for TATF8HBP with the six different analytes.

Fig. S8. Stern-Volmer plots and fits for TATSFHBP with the six different analytes.

Table S3. Summary of the Stern-Volmer Constants (K_{SV}) for each polymers with different analytes.

Polymer	TNT/M ⁻¹	DNT/M ⁻¹	pNT/M^{-1}	NB/M ⁻¹	DQ/M ⁻¹	BP/M ⁻¹
TATF8HBP	132.3±2.4	122.0±1.0	87.8±0.8	74.1±0.7	68.1±0.2	21.3±0.2
TATSFHBP	130.2±0.5	121.7±0.9	86.9±0.4	70.3±0.5	75.8±0.3	24.5±0.1

Fig. S9. A schematic drawing of an experimental setup for fiber-optic sensing of explosive vapors.

Fig. S10. Time-dependent fluorescence quenching of **TATSFHBP** films coated on fiber-optic tips upon exposure to saturated DNT, TNT, *p*NT, NB, DQ, BP, ethanol, water, RDX and NH₄NO₃ vapors.

Fig. S11. Fluorescence quenching images of TNT-indicating papers quenched by TNT with various amounts (unit: ng·mm⁻²).