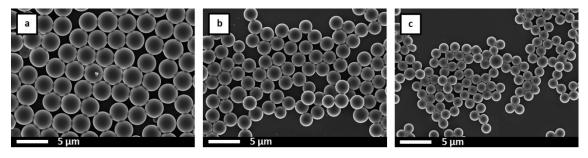
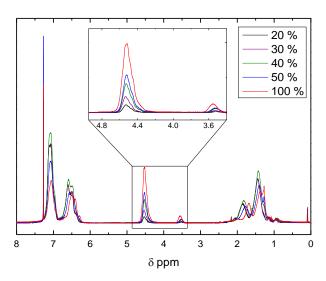
Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

—Supporting Information—

Two in One: Use of Azide Functionality for Controlled Photo-crosslinking and Click-modification of Polymer Microspheres


Marco Albuszis, † Peter. J. Roth, †, * Werner Pauer, †, * and Hans-Ulrich Moritz†, *

- † Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
- [‡] Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom


Corresponding Author Email Addresses:

- P. J. Roth (p.roth@surrey.ac.uk)
- W. Pauer (pauer@chemie.uni-hamburg.de)
- H.-U. Moritz (moritzhu@chemie.uni-hamburg.de)

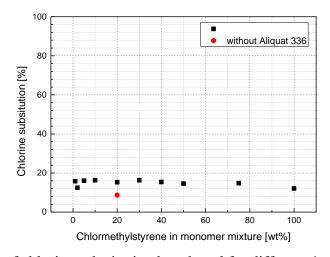

Synthesis of Chloromethyl-functional Microspheres

Figure S1. SEM images of 4-vinylbenzyl chloride (VBC)-functional microspheres with VBC feed contents of (a) 10 wt-%; (b) 50 wt-%; (c) 100 wt-% showing well-defined microspheres.

Figure S2. ¹H NMR spectra of microspheres (dissolved in CDCl₃) containing 4-vinylbenzyl chloride in varying amounts (20, 30, 40, 50, 100 wt-%). δ /ppm = 7.30–6.20 (Ar–H); 4.51 (–C H_2 Cl); 3.51 (–C H_2 OEt); 2.10–0.90 (backbone).

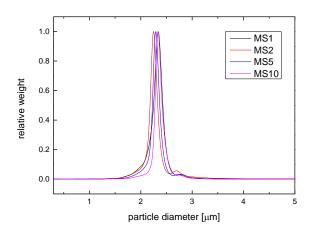
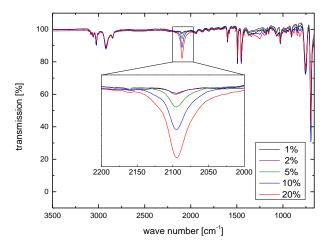


Figure S3. Degree of chlorine substitution by ethanol for different 4-vinylbenzyl chloride contents in poly(styrene-*co*-4-vinylbenzyl chloride) microspheres.


Azidomethyl-functional Microsphere Characterization

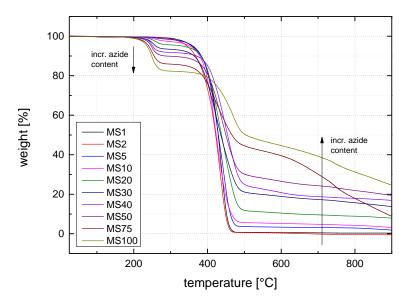

Figure S4. Photographs of microsphere samples MS₁ (left), MS₅₀ (middle), and MS₁₀₀ (right) showing powders of white to yellow color depending on VBA content.

Figure S5. Disc centrifuge results of samples MS₁ (black), MS₂ (red), MS₅ (blue), and MS₁₀ (pink) giving particle diameters around 2.5 μm.

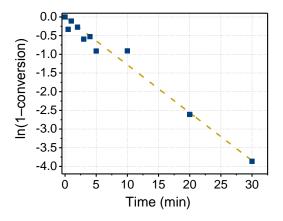


Figure S6. IR spectra of P(S-co-VBA) microspheres with VBA feed ranging from 1–20 wt-% with the N=N=N asymmetric stretch band inset

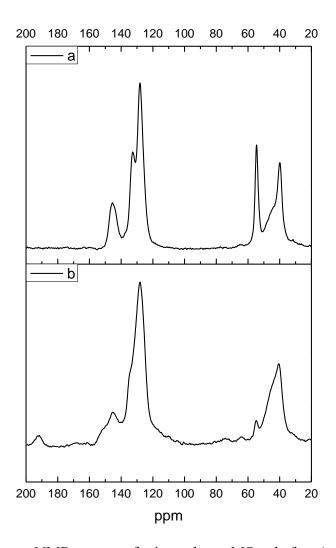


Figure S7. Thermogravimetric analysis of azide-functional microspheres showing the azide-to-nitrene reaction around 250 $^{\circ}$ C and the decomposition of the polymer material as of \sim 350 $^{\circ}$ C.

Photo-crosslinking

Figure S8. First order kinetic fit of the IR-determined azide conversion during the irradiation of sample MS_{100} .

Figure S9. ¹³C solid state NMR spectra of microspheres MS₁₀₀ before (top) and after (bottom) exhaustive photo-crosslinking.