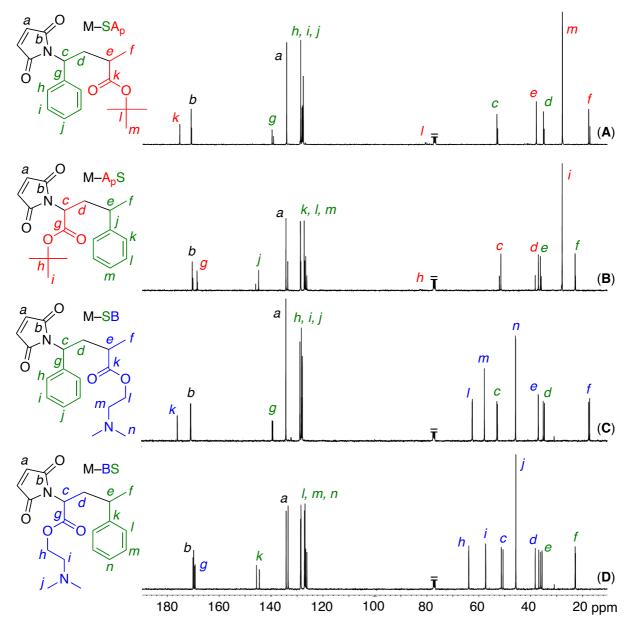
Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

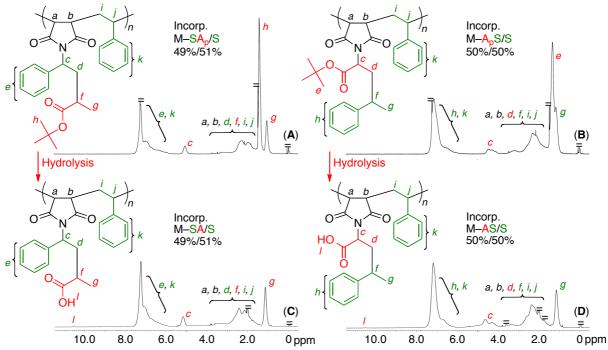
Supporting Information

Sequence-regulated vinyl copolymers with acid and base monomer units via atom transfer radical addition and alternating radical copolymerization

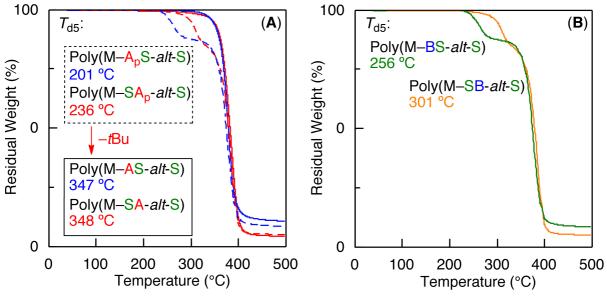
Takamasa Soejima, [†] Kotaro Satoh ^{†,‡,*} and Masami Kamigaito ^{†,*}

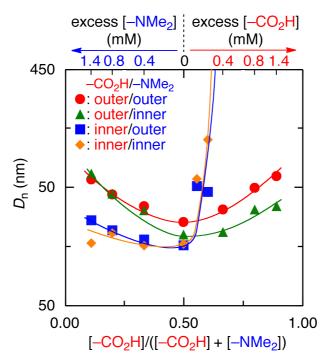

 $e\hbox{-}mail: satoh@apchem.nagoya-u.ac.jp, kamigait@apchem.nagoya-u.ac.jp}$

Contents:


Fig. S1	······S2
Fig. S2	S3
Fig. S3	S3
Fig. S4	·····S4
Fig. S5	S5
Table S1	·····S6

[†]Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan


[‡]Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan


Fig. S1. 13 C NMR spectra (CDCl₃, r.t.) of a series of maleimide-ended sequence-regulated oligomonomers (M–SA_p (A), M–A_pS (B), M–SB (C), M–BS (D)).

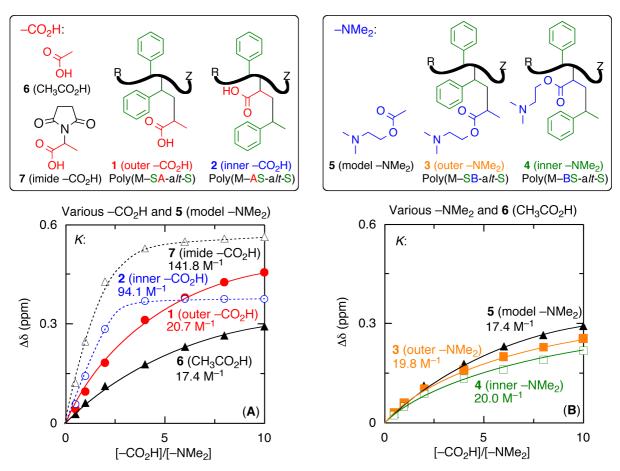

Fig. S2. ¹H NMR spectra of a series of main- and side-chain sequence-regulated acid-functionalized vinyl copolymers (poly(M_1 -alt-S)) obtained in alternating free radical copolymerization of maleimide-ended functional oligomonomers and styrene with AIBN in toluene at 60 °C ([M_1]₀ = [S]₀ = 1.0 M, [AIBN]₀ = 20 mM) and after deprotections of tBu ester. M_1 : M-SA_p (A), M-A_pS (B), M-SA (A), M-AS (D).

Fig. S3. TGA curves and T_{d5} values a series of main- and side-chain sequence-regulated functional vinyl copolymers (poly(M₁-alt-S)) obtained in alternating free radical copolymerization of sequence-regulated maleimide-ended oligomonomers and styrene. (A) dotted lines: poly(M–SA_p-alt-S) and poly(M–ApS-alt-S). solid lines: poly(M–SA-alt-S) and poly(M–AS-alt-S). (B) poly(M–SB-alt-S) and poly(M–BS-alt-S).

Fig. S4. DLS analysis of mixture of acid- and base-functionalized sequence-regulated vinyl copolymers at different ratios in CHCl₃ at 20 °C. $[-CO_2H] = [-NMe_2] = 0.20$ mM at $[-CO_2H]/([-CO_2H] + [-NMe_2]) = 0.50$.

Fig. S5. NMR titration and equilibrium constants (*K*) between sequence-regulated acid-functionalized oligomonomers and model amine (**5**) (A) or base-functionalized oligomonomers and CH₃CO₂H (**6**) (B) obtained by the changes in chemical shifts (ppm) of methyl protons of dimethylamino groups in CDCl₃ at 20 °C. [-NMe₂] =10 mM.

Table S1. Alternating RAFT copolymerization of sequence-regulated functional oligomonomers (M_1) and Styrene (S)

Entry	M_1	$([M_1]_0 + [S]_0)/$	Time, h	Conv., % ^c	${M_{ m n}}^d$	$M_{ m w}/{M_{ m n}}^d$	Incorp. % ^c
		$[CDB]_0$		M_1/S			M_1/S
1^a	$M-SA_p$	100	24	95/96	15900	1.16	49/51
2^a	$M-A_pS$	100	24	92/95	16000	1.17	49/51
3^b	M-SB	100	24	96/94	12100	1.34	50/50
4^b	M-BS	100	24	96/97	11800	1.24	50/50

Polymerization condition: ${}^a[M_1]_0/[S]_0/[CDB]_0/[AIBN]_0 = 1000/1000/20/5.0 \text{ mM}$ in toluene at 60 °C. ${}^b[M_1]_0/[S]_0/[CDB]_0/[V-70]_0 = 1000/1000/20/5.0 \text{ mM}$ in PhC(CF₃)₂OH at 20 °C. c Determined by 1 H NMR. d Determined by SEC.