Supporting Information to

Quantitative end-group functionalization of PNIPAM from aqueous SET-LRP via in situ reduction of Cu(II) with NaBH₄.

Mikhail Gavrilov,¹ Zhongfan Jia, ¹ Virgil Percec² and Michael J. Monteiro^{1,*}

 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia

 Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 190104-6323, United States

*author to whom correspondence should be sent:

e-mail: <u>m.monteiro@uq.edu.au</u>

Figure S1. Size exclusion chromatograms for the CuAAC 'click' reaction between 5 and 6. (A) Polymer 5e + 6, (B) Polymer 5f + 6, (C) Polymer 5g + 6. Curves (a) 5, (b) 6, (c) at time = 0 min for CuAAC, (d) at time = 180 min for CuAAC, and (e) LND model simulation of curve d.

Table S1.	Weight	fractions	of co	omponents	after	the	CuAAC	reaction	determined	by	LND
model sim	ulation o	of SEC cu	ves.								

CuAAC	PNIPAM-N ₃ (5), %	PNIPAM-≡ (6), %	PNIPAM- PNIPAM (7), %	Alk-Alk coupling (8), %	Unknown 1, %	Unknown 2, %
6+5a	0.14	8.59	65.67	25.60		
6+5b	0.00	10.77	67.97	21.26		
6+5c	0.38	13.13	70.93	15.56		
6+5d	0.64	10.70	71.92	16.73		
6+5e	0.00	15.66	82.77	1.12	0.00	0.45
6+5f	0.53	5.01	80.18	13.78	0.25	0.25
6+5g	0.25	12.77	80.53	6.14	0.25	0.07

Figure S2. Kinetics of in situ azidation of $(HO)_2$ -PNIPAM_n-Br (2a) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 0 min, (B) 0.5 min, (C) 10min and (D) of purified 5a.

Figure S3. ¹H NMR spectrum of (HO)₂-PNIPAM₂₂-N₃ (**5a**) recorded in CDCl₃ at 298K (400 MHz).

Figure S4. Full and expanded MALDI-ToF spectra of $(HO)_2$ -PNIPAM₂₄-S-Ph (**4a**) acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S5. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₂₄-S-Ph (4a) recorded in D₂O (0.6 mL) + DMSO- d_6 (0.1mL) at 298K (400 MHz).

SET-LRP at 0°C. MALDI-ToF spectra of (A) at 20 min, (B) 60 min, (C) 5 hours and (D) of purified **5b**.

Figure S7. ¹H NMR spectrum of (HO)₂-PNIPAM₃₇-N₃, **5b** recorded in CDCl₃ at 298K (400 MHz).

Figure S8. Full and expanded MALDI-ToF spectra of $(HO)_2$ -PNIPAM₃₆-S-Ph (**4b**) acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S9. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₃₆-S-Ph, **4b** recorded in D₂O (0.6 mL) + DMSO- d_6 (0.1mL) at 298K (400 MHz).

Figure S10. Kinetics of in situ azidation of $(HO)_2$ -PNIPAM_n-Br (**2c**) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 0 min, (B) 0.5 min, (C) 10min and (D) of purified **5c**.

Figure S11. ¹H NMR spectrum of (HO)₂-PNIPAM₅₄-N₃, **5c** recorded in CDCl₃ at 298K (400 MHz).

acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S13. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₄₄-S-Ph, 4c recorded in D₂O (0.6 mL) + DMSO- d_6 (0.1mL) at 298K (400 MHz).

Figure S14. Kinetics of in situ azidation of (HO)₂-PNIPAM_n-Br (**2d**) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 0 min, (B) 0.5 min, (C) 10min and (D) of purified **5d.**

Figure S15. ¹H NMR spectrum of (HO)₂-PNIPAM₅₇-N₃, **5d** recorded in CDCl₃ at 298K (400 MHz).

acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S17. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₅₅-S-Ph, 4d recorded in D₂O (0.6 mL) + DMSO- d_6 (0.1mL) at 298K (400 MHz).

Figure S18. Kinetics of in situ azidation of $(HO)_2$ -PNIPAM_n-Br (**2e**) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 20 min, (B) 60 min, (C) 5 hours and (D) of purified **5e**.

(400 MHz).

acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S21. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₃₄-S-Ph (4e) recorded in D₂O (0.6 mL) + DMSO- d_6 (0.1mL) at 298K (400 MHz).

Figure S22. Kinetics of in situ azidation of $(HO)_2$ -PNIPAM_n-Br (**2f**) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 20 min, (B) 60 min, (C) 5 hours and (D) of purified **5f**.

(400 MHz).

acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S25. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₃₁-S-Ph (4f) recorded in D₂O (0.6 mL) +

DMSO-*d*₆ (0.1mL) at 298K (400 MHz).

Figure S26. Kinetics of in situ azidation of $(HO)_2$ -PNIPAM_n-Br (**2g**) after 120 min of aqueous SET-LRP at 0°C. MALDI-ToF spectra of (A) at 20 min, (B) 60 min, (C) 5 hours and (D) of purified **5g**.

(400 MHz).

acquired in reflectron mode with Na salt as cationizing agent and DCTB matrix.

Figure S29. ¹H NMR spectrum of $(HO)_2$ -PNIPAM₃₄-S-Ph (4g) recorded in D₂O (0.6 mL) +

DMSO-*d*₆ (0.1mL) at 298K (400 MHz).

Figure S31: ATR-FTIR of spectra of (A) (HO)₂-PNIPAM₂₂-N₃ (**5a**), (B) (HO)₂-PNIPAM₃₇-N₃ (**5b**), (C) (HO)₂-PNIPAM₅₄-N₃ (**5c**) and (D) (HO)₂-PNIPAM₅₇-N₃ (**5d**).

Figure S32: ATR-FTIR of spectra of (A) (HO)₂-PNIPAM₃₁-N₃ (**5e**), (B) (HO)₂-PNIPAM₃₇-N₃ (**5f**) and (C) (HO)₂-PNIPAM₄₀-N₃ (**5g**).