Supporting Information

for

Side-Chain Poly(phosphoramidate)s via Acyclic Diene Metathesis Polycondensation

Alper Cankaya, Mark Steinmann, Yagmur Bülbül, Ingo Lieberwirth, and Frederik R. Wurm* Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany. Email: wurm@mpip-mainz.mpg.de, Fax: +49 6131 370 330; Tel: +49 6131 379 581

Table of contents

1.	NMR-spectra	2
2	GPC-data	10
4.		.10
3.	Bulk properties	.11

1. NMR-spectra

Fig. S1: ¹H NMR spectrum of **1** (298K, 300 MHz in DMSO-*d*₆).

Fig. S2. ³¹P NMR spectrum of 1 (298K, 202 MHz in DMSO-*d*₆).

Fig. S3. ¹³C NMR spectrum of 1 at (298 K, 125 MHz in DMSO- d_6).

Fig. S4. ¹H¹⁵N HMBC spectrum of **1** (298K, 710 MHz in DMSO- d_6). Cross relaxation between the ¹⁵N signal at 42.29 ppm with the neighboring protons can be observed. Cross relaxation is displayed between the ¹⁵N signal and the proton bound to the nitrogen atom at 4.75 ppm. The alpha (2.71 ppm) and beta (1.37 ppm) methylene groups to the amidate group show also cross relaxation.

Fig. S5. ¹H NMR spectrum of P1 (298 K, 300 MHz in CDCl₃).

Fig. S6. ³¹P NMR spectrum of P1 (298 K, 202 MHz in CDCl₃).

Fig. S7. ¹H NMR spectrum of 2 at (298 K, 300 MHz in CDCl₃).

Fig. S8. ³¹P NMR spectrum of 2 (298 K, 202 MHz in CDCl₃)

Fig. S 9. ¹H NMR spectrum of P2 at (298 K, 300 MHz in CDCl₃).

Fig. S 10. ³¹P NMR spectrum of P2 at (298 K, 202 MHz in CDCl₃).

Fig. S11. ¹H NMR spectrum of P1-H at (298 K, 300 MHz in CDCl₃).

Fig. S12. ¹H NMR spectrum of P2-H at (298 K, 300 MHz in CDCl₃).

Fig. S13. ³¹P NMR spectrum after side-chain cleavage of P1 at (298 K, 121.5 MHz in CDCl₃).

2. GPC-data

Fig. S 14. Representative GPC elugrams of **P1** with different catalyst loadings prepared by ADMET polycondensation.

Fig. S15. Representative GPC elugram of Poly2 prepared by ADMET polycondensation.

Fig S16: Overlay of SEC elugrams of P1 before and after hydrogenation.

Bulk properties

Fig. S17. TGA thermograms of P1 and P2.

Figure S18. DSC thermograms of (a) P1 (black) and P1-H (red). (b) P2 (green) and P2-H (blue). Both experiments were performed at a heating/cooling rate of 10°C/min.

Figure S19: TEM micrograph and the corresponding diffraction pattern of solution crystallized

Р1-Н.

Figure S20: TEM micrograph and the corresponding diffraction pattern (inset) of solution crystallized P2-H.

Figure S21: SAXS and WAXS measurements of P2-H samples. Prior to the x-ray measurement the sample was annealed at 42 °C for 24 hours.