Supporting Information

Bimetallic aluminum complexes with cyclic β-ketiminato ligands: cooperative effect improves capability in polymerization of lactide and *ε*-caprolactone

Hai-Chao Huang,^a Bin Wang,^a Yan-Ping Zhang ^a and Yue-Sheng Li^{*a,b}

^a Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

*Corresponding Author, E-mail: <u>ysli@tju.edu.cn</u>

	4a	4b	4c
Empirical formula	$C_{28}H_{34}Al_2N_2O_2$	$C_{32}H_{40}Al_2N_2O_2$	$C_{31}H_{40}Al_2N_2O_2$
Formula weight	484.53	538.62	526.61
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2(1)/c	P2(1)/c	P-1
Temperature(K)	113(2)	113(2)	113(2)
Wavelength(A)	0.71073	0.71075	0.71073
a(Å)	10.649(2)	10.1875(7)	7.4541(8)
b(Å)	10.0527(18)	23.8487(16)	12.2711(13)
c(Å)	12.321(2)	12.0803(8)	15.7103(15)
a (°)	90.00	90.00	77.640(6)
β (°)	98.931(4)	96.1673(16)	81.252(6)
γ (°)	90.00	90.00	80.078(6)
V(Å3),Z	1303.0(4), 2	2918.0(3), 4	1372.8(2), 2
Densitycalcd(Mg/m ³)	1.235	1.226	1.274
Absorptioncoefficient(mm ⁻¹)	0.139	0.131	0.137
F(000)	516	1152	564
Crystal size/mm	0.20 x 0.18 x 0.12	0.100 x 0.080 x 0.080	0.20 x 0.18 x 0.12
θ range for data (°)	3.11 to 27.50	1.710 to 28.723	3.06 to 27.55
Reflections collected	16257	39454	17806
Independent reflections	2981	7499	6207
	R(int) = 0.0181	R(int) = 0.0213	R(int) = 0.0226
Data/restraints/parameters	2981/0/156	7499/0/343	6207/0/334
Goodness-of-fit on F ²	1.048	1.045	1.038
Final R indices [I>2o (I)]: R1, wR2	R1 = 0.0292	R1 = 0.0334	R1 = 0.0328
	wR2 = 0.0852	wR2 = 0.0929	wR2 = 0.0937
Largest diff. Peak and hole (e Å ⁻³)	0.365 and -0.235	0.416 and -0.330	0.385 and -0.365

 Table S1. Crystal data and structure refinements of complexes 4a-c

	4a	4b	4 c				
Bond distances							
Al(1)-O(1)	1.8004(9)	1.7990(9)	1.7988(9)				
Al(1)-N(1)	1.9359(10)	1.9448(10)	1.9497(11)				
Al(1)-C(13)	1.9605(12)	1.9539(13)	1.9565(13)				
Al(1)-C(14)	1.9611(13)	1.9609(12)	1.9628(13)				
O(1)-C(1)	1.3119(13)	1.3097(12)	1.3151(14)				
N(1)-C(11)	1.3080(14)	1.3171(14)	1.3071(15)				
N(1)-C(12)	1.4696(13)	1.4761(12)	1.4785(14)				
	Bond angles	3					
O(1)-Al(1)-N(1)	94.48(4)	94.82(4)	93.91(4)				
O(1)-Al(1)-C(13)	114.99(5)	110.16(5)	111.89(5)				
N(1)-Al(1)-C(13)	108.88(5)	111.22(5)	109.77(5)				
O(1)-Al(1)-C(14)	112.21(5)	108.36(5)	106.87(5)				
N(1)-Al(1)-C(14)	110.42(5)	113.69(5)	112.49(5)				
C(13)-Al(1)-C(14)	114.06(5)	116.39(6)	119.04(6)				
C(1)-O(1)-Al(1)	129.43(7)	128.14(7)	121.21(7)				
C(11)-N(1)-Al(1)	122.87(7)	120.13(7)	117.88(8)				
C(12)-N(1)-Al(1)	120.56(7)	123.66(7)	123.91(8)				
	The distances betwe	een Al(1) and Al(2)					
Al(1)- Al(2)	6.617	5.965	7.770				

Table S2 Selected bond distances (Å) and angles (°) for complexes 4a-c

Dum	Comular	Mana		time	Conv.	TOF^b	$M_{ m n, theo}{}^{c,d}$	$M_{\rm n}{}^f$	
Kun	Complex	Mono.		(min)	(%)	(h ⁻¹)	(×10 ⁴)	(×10 ⁴)	$M_{\rm W}/M_{\rm n}^{\rm J}$
1	4a	ε-CL	1:1:100	10	97	582	1.11	1.54	1.17
2	4 b	ε-CL	1:1:100	10	64	384	0.73	0.87	1.14
3	M1	ε-CL	1:1:100	10	43	258	0.49	0.52	1.14
4	4 c	ε-CL	1:0:100	7					
5	M2	ε-CL	1:1:100	7	84	720	0.96	1.00	1.12
6	4 c	ε-CL	1:1:100	3	83	1660	0.95	0.97	1.19
7	4 c	ε-CL	1:2:100	3	89	1780	0.51	0.53	1.21
8	4 c	ε-CL	1:4:100	3	85	1700	0.24	0.29	1.27
9	4 c	ε-CL	1:2:200	6	89	890	1.02	1.09	1.21
10	4 c	ε-CL	1:2:400	12	91	455	2.08	2.36	1.24
11	4 c	ε-CL	1:2:600	15	93	372	3.19	3.32	1.22
12	4 c	ε-CL	1:2:800	20	90	270	4.11	4.46	1.25
13	4 c	ε-CL	1:2:1000	30	94	188	5.36	5.53	1.23
14	M2	ε-CL	1:2:200	6	69	73	0.79	0.89	1.21
15	M2	ε-CL	1:2:400	12	71	355	1.62	2.01	1.22
16	M2	ε-CL	1:2:600	16	74	296	2.54	2.95	1.26
17	M2	ε-CL	1:2:800	20	65	195	2.97	3.39	1.24
18	M2	ε-CL	1:2:1000	30	63	126	3.59	3.86	1.25
19	4 a	L-LA	1:1:100	240	36	9	0.52	0.58	1.08
20	4b	L-LA	1:1:100	240	trace				
21	4 c	L-LA	1:1:100	10	20	120	0.29	0.27	1.08
22	4 c	L-LA	1:1:100	15	42	168	0.60	0.72	1.07
23	4 c	L-LA	1:1:100	30	74	148	1.07	1.34	1.12
24	4 c	L-LA	1:1:100	45	89	119	1.28	1.70	1.14
25	4 c	L-LA	1:1:100	60	97	97	1.40	1.89	1.22
26	4 c	rac-LA ^g	1:1:100	60	95	95	1.37	1.64	1.23
27	M2	L-LA	1:0:100	90					
28	M2	L-LA	1:1:100	90	79	53	1.14	1.02	1.18

Table S3 Ring-opening polymerization of L-LA and ε -CL by 4a-c/ⁱPrOH system^a

^{*a*} 25 μ mol of Al complex in 2 mL toluene, and polymerization at 80 °C; ^{*b*} Non-optimized turnover frequency calculated over the whole reaction time; ^{*c*} Calculated $M_{n,theo} = [\varepsilon - CL]_o/[OH] \times conv.(\varepsilon - CL) \times 114.14 + M_{iPrOH}; ^{$ *d* $} Calculated <math>M_{n,theo} = [L-LA]_o/[OH] \times conv.(L-LA) \times 144.13 + M_{iPrOH}; ^{$ *f* $} Experimental <math>M_n$ values were determined by GPC analysis in THF using polystyrene standards and corrected by the equation: $M_n = 0.58 \times M_{n(GPC)}$ for PLA, and $M_n = 0.56 \times M_{n(GPC)}$ for PCL. ^{*g*} $P_m = 0.33$.

Table S4 Synthesis of PLA-*b*-PCL copolymer by 4c/*i* PrOH system *a*

Entry	Complex	Time ^b	$M_{\rm n,GPC} c(10^{-4})$	$M_{\rm n}^{\ d}(10^{-4})$	$M_{\rm w}/M_{\rm n}$
PLA-b-PCL ^e	4c	1.5h(LA)+1h(CL)	4.0	2.12	1.34

^{*a*} Reaction conditions: 25 µmol complex in toluene, ^{*i*}PrOH 1.0 equiv. to Al, monomer 5.0 mmol, 80 °C; ^{*b*} After LA reaction for 1.5 h, CL was added and reacted for the prescribed time; ^{*c*} GPC data determined by SEC in THF relative to polystyrene standards; ^{*d*} GPC data determined by SEC in THF relative to polystyrene standards corrected by the Mark–Houwink correction factor ($M_n = M_{n,SEC} \times 0.56 \times PCL\% + M_{n,SEC} \times 0.58 \times PLLA\%$); ^{*e*} the first block PLA with $M_{n,GPC} = 1.83 \times 10^4$, $M_w/M_n = 1.21$, conversion > 99%

Table S5. Experimental T_g of the CL/LA copolymers as a function of the mole fraction of ε -CL unit

Entry	Time (h)	CL in copolymer ^b (%)	Τ _g (°C)
1	0.5	14.5	43
2	1	21.8	35
3	2	45.1	2.4
4	3	50.0	-2.6

^{*a*} Reaction conditions: 25 μ mol of Al catalyst in 2 mL of toluene, ^{*i*}PrOH/[Al] = 2.0, [CL]/[LA]/[Al]=100:100:1, copolymerization at 80 °C; ^{*b*}CL in copolymer measured by ¹H NMR.

Entry	Conv. (%)	\mathbf{X}^{b}	Y ^c	G^{d}	F ^e
1	3.1	0.43	3.15	0.29	0.059
2	5.4	1.0	6.67	2.11	0.58
3	5.4	2.3	14.3	4.71	1.39
4	4.7	9.0	33.3	8.73	2.43

Table S6. Calculate reactivity ratios for L-LA and E-CL in Poly(LA-grad-CL) copolymers ^a

^{*a*} Reaction conditions: 25 µmol of Al catalyst in 2 ml of toluene, ['PrOH]/[Al] = 2.0, 80 °C; The reactivity ratios were calculated using the nonlinear least squares (NLLS) method, the monomer composition in the obtained oligomer was examined at a low conversion ($\leq 10\%$).

 ${}^{b}X = M_{LA}/M_{CL}$, M_{LA} and M_{CL} were defined as moles of monomer in the copolymerization reaction system; ${}^{c}Y$ was defined as the mole ratio of two kinds of monomer;

 ${}^{d}G = X (Y-1)/Y;$ ${}^{e}F = X^{2}/Y^{3}.$

L. Run	LA:CL :Al:OH	Conversion	$M_{ m n}{}^b$	M/Mb	I c	I., c	CL (mol
	(mol:mol)	(%)	/10-4	<i>W</i> _W / <i>W</i> _n	LCL	L_{LA}	%) ^d
1	400:100:1:1	trace					
2	200:100:1:1	29	0.84	1.31	5.25	27.6	24.7
3	100:100:1:1	41	1.12	1.39	3.36	20.8	21.2
4	100:200:1:1	46	1.38	1.37	4.61	29.1	17.8
5	100:400:1:1	19	0.69	1.41			

Table S7. Copolymerization of ε -CL and L-LA with different monomer ratio by 4a/ⁱPrOH system^a

^{*a*} Reaction conditions: 25 μmol of Al catalyst and copolymerization at 80 °C for 8 h; ^{*b*} Determined by GPC in THF using polystyrene as standard; ^{*c*} Average sequences length of the caproyl unit and lactidyl unit was determined by ¹³C NMR; ^{*d*} Monomer conversion was determined by ¹H NMR. ^{*d*} CL in the copolymer (mol %)

Fig. S1. Molecular structure of complex **4a** with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2. Molecular structure of complex **4b** with thermal ellipsoids at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3. ¹H NMR spectrum of binuclear aluminum complexes **4c** in the presence of ^{*i*}PrOH (toluene-d₈, 400 MHz)

Fig. S4. Methyne proton of the hydroxyl end group of the PLA-*b*-PCL copolymer (CDCl₃, 25 °C).

Fig.S5. GPC profiles of PLA and PLA-*b*-PCL obtained by the 4c/*i*PrOH system (in THF at 25 °C).

Fig. S6. ¹³C NMR spectrum of PLA-*b*-PCL synthesized by 4c/^{*i*}PrOH system (CDCl₃, 25 °C).

Fig. S7. DSC curve of PLA-*b*-PCL prepared by 4c/^{*i*}PrOH system.

Fig. S8. ¹H NMR spectrum of poly(LA-grad-CL) copolymer (run 2, Table 3) (CDCl₃, 25 °C).

Fig. S9. ¹³C NMR spectra (CDCl₃, 25 °C) of the copolymers obtained at different conversion.

Fig. S10. Experimental T_g of the CL/LA copolymers as a function of the mole fraction of ε -CL unit.

Fig. S11. G-F plot for Poly(LA-grad-CL) copolymers by 4c/ⁱPrOH system.

Fig. S12. ¹H NMR spectrum of binuclear aluminum complexes 4c (toluene-d₈,400 MHz)

Fig. S13. ¹H NMR spectrum of β-ketiminato ligand **3a** (CDCl₃, 25 °C).

Fig. S14. ¹H NMR spectrum of β-ketiminato ligand 3b (CDCl₃, 25 °C).

Fig. S15. ¹H NMR spectrum of β-ketiminato ligand 3c (CDCl₃, 25 °C).

Fig. S16. ¹H NMR spectrum of binuclear aluminum complexes 4a (CDCl₃, 25 °C).

Fig. S17. ¹H NMR spectrum of binuclear aluminum complexes 4b (CDCl₃, 25 °C).

Fig. S18. ¹H NMR spectrum of binuclear aluminum complexes 4c (CDCl₃, 25 °C).

Fig. S19. ¹H NMR spectrum of β-ketiminato ligand for M1 (CDCl₃, 25 °C).

Fig. S20. ¹H NMR spectrum of mononuclear aluminum complex M1 (CDCl₃, 25 °C).

Fig. S21. ¹H NMR spectrum of mononuclear aluminum complex for M2 (CDCl₃, 25 °C).

Fig. S22. ¹H NMR spectrum of mononuclear aluminum complex M2 (CDCl₃, 25°C).

Synthesis of aluminum complexes M1 and M2

Into a stirred solution of $C_6H_{11}N=CHC_4H_4(C_6H_4)OH$ (2.0 mmol) in toluene (10 mL), AlMe₃ (1 M hexane solution, 2.1 mL) was added drop-wise over 10 min. After stirred for 8 h the solution was concentrated and cooled to -20 °C, yellow solid was isolated by filter and recrystallized from mixture of toluene/hexane and afforded [$C_6H_{11}N=CHC_4H_4(C_6H_4)O$] Al(CH_3)₂ (M1) Yield:92%.¹H NMR (400 MHz, CDCl₃) 7.88 (d, 1H, N = C-*H*), 7.67 (s, 1H, Ar-*H*), 7.33 (m, 2H, Ar-*H*), 7.18 (d, 1H, Ar-*H*), 3.22 (dd, 1H, CH-(CH_2)₂), 2.95–2.77 (m, 2H,- CH_2 -), 2.62–2.47 (m, 2H, - CH_2 -), 1.92 (t, 4H,-CH- CH_2), 1.80–1.02 (m, 6H), -0.71 (s, Al- CH_3 , 6H). ¹³C NMR (100 MHz, CDCl₃):166.33, 139.73, 133.29, 130.76, 127.15, 126.69, 125.93, 104.37, 67.35, 31.08, 28.69, 25.94, 25.56, 25.15, 24.5, -8.45.

Synthesis for [C(CH₃)₃CHN=CHC₄H₄(C₆H₄)O] Al(CH₃)₂ (M2) was performed according to the same procedure as that of M1 Yield:88% .¹H NMR (400 MHz, CDCl₃) 7.95 (d, 1H, N = C-*H*), 7.51 (s, 1H, Ar-*H*), 7.42–7.25 (m, 2H, Ar-*H*), 7.19 (d, 1H, Ar-*H*), 3.22 (s, 2H -CH₂-CH), 2.95–2.78 (m, 2H, -CH₂-), 2.66–2.46 (m, 2H, -CH₂-), 1.01 (s, 9H, CH₃), -0.73 (d, 6H, Al-CH₃). ¹³ C NMR (100 MHz, CDCl₃):166.46, 139.45, 133.18, 130.87, 127.26, 126.75, 125.97, 106.16, 67.57, 33.97, 28.51, 25.84, 25.39, 25.17, -8.65.