Supplementary Information

for

Synthesis of a Glucose Oxidase-Conjugated, Polyacrylamide-Based,

Fluorescent Hydrogel for a Reusable, Ratiometric Glucose Sensor

Yongkyun Kim,^{a,b†} Ho Namgung,^{a†} Taek Seung Lee^{a*}

^a Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea

^bSamyang Corporation, 730 Daedeok-daero, Yuseong-gu, Daejeon 34055, Korea

⁺ These authors contributed equally.

* Corresponding author: tslee@cnu.ac.kr

Scheme S1. Changes in structures and emission colors of P1 under various pHs.

(B)

(A)

Figure S1. (A) FT-IR spectra of (a) GOx, (b) **P1**, (c) **P2**, and (d) **P1**@GOx. (B) XPS spectra of (a) **P1** and (b) **P2**. Red and green curves indicate the fitted and deconvoluted ones, respectively.

Figure S2. Fluorescence spectra (a) and photographs of **P1**-based hydrogel at pH 4 (b) and at pH 10 (c). The photographs were taken under ambient light (left) and UV irradiation (365 nm, right).

(a)

(b)

(c)

Figure S3. SEM images of the pristine **P1**-based hydrogel (a), **P1**-GOx hydrogel (b), and **P1**@GOx hydrogel (c).

(a)

Figure S4. (a) Changes in the fluorescence spectra of **P1**-GOx hydrogel (0.57 g) as a function of glucose concentrations and (b) plot of relative fluorescence intensity versus concentration of glucose. I₅₉₈ and I₅₁₈ correspond to the emission intensity at 598 nm and 518 nm, respectively. Excitation wavelength, λ_{ex} = 490 nm.

Figure S5. Photographs of the **P1**-GOx hydrogel according to the concentrations of glucose under ambient (left) and UV light (365 nm, right).

Figure S6. Selectivity of the **P1**-GOx hydrogel upon exposure to sodium chloride, potassium chloride, calcium chloride, galactose (Gal), fructose (Fru), mannose (Man) and glucose (Glu). [Monosaccharides] = 10 mM and [Electrolytes] = 10 mM. I₅₉₈ and I₅₁₈ correspond to the emission intensity of the **P1**-GOx hydrogel at 598 nm and 518 nm, respectively.

Figure S7. Change in relative intensity (I_{598}/I_{518}) of P1@GOx upon exposure time to glucose. [Glucose] = 0.01 M. I_{598} and I_{518} correspond to the emission intensity at 598 nm and 518 nm, respectively. Excitation wavelength, λ_{ex} = 490 nm.

Figure S8. Changes in the fluorescence spectra of **P1**@GOx hydrogel (0.57 g) as a function of glucose concentrations (20 to 50 mM). Excitation wavelength, $\lambda_{ex} = 490$ nm.