Electronic Supplementary Information

Kinetics and Mechanistic Aspects of the Iodine Transfer

Copolymerization of Vinylidene Fluoride with 2,3,3,3-Tetrafluoro-1-

propene and Functionalization into *w*-Hydroxy Fluorinated

Copolymer

Sanjib Banerjee, Saad Zaghloul[†], Ali Alaaeddine[#] and Bruno Ameduri^{*}

Ingénierie et Architectures Macromoléculaires, Institut Charles Gerhardt, UMR 5253 CNRS,

UM, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

*Corresponding author. Tel: +33-467-144-368, Fax: +33-467-147-220. E-Mail: Bruno.ameduri@enscm.fr

[†]On leave from Textile Research Department, National Research Center, 33 rd El. Behoth st, Dokki, Cairo, P. O. 12622, Egypt

present address: Laboratoire de Chimie Médicinale et des produits naturels & PRASE, EDST Lebanese University, Département de Chimie et de Biochimie, Faculté de Sciences 1, Campus de Hadath, Beyrouth, Libanon

Determination of reactivity ratios of VDF and 1234yf

Copolymer compositions were determined by measuring VDF and 1234yf conversions by ¹⁹F NMR spectroscopies using equations 2 and 3, described in the main manuscript. The following equation was used:

$$G = r_{VDF} - r_{1234yf}$$

where, $G = x(X-1) / X$.
 $H = x^2/X$.

where $x = f_{VDF}/f_{1234yf}$, and f_{VDF} and f_{1234yf} stand for the initial molar fractions of VDF and 1234yf, respectively.

 $X = F_{VDF}/F_{1234yf}$, where F_{VDF} and F_{1234yf} stand for the VDF and 1234yf molar fractions, respectively, in the obtained copolymer.

In the Kelen-Tüdös laws, the following equation was used:

$$\eta = (r_{VDF} + r_{1234yf} / \alpha)\zeta - r_{1234yf} / \alpha$$
where, $\eta = G/(\alpha + H)$

$$\zeta = H/(\alpha + H)$$

$$\alpha = (H_{min} \times H_{max})1/2$$

To calculate the parameters for extended Kelen-Tüdös plot,

$$H = x/Z^2$$
 and $G = (x - 1)/Z$
where $Z = log(1-\xi_1)/log(1-\xi_2)$.

 ξ_2 and ξ_1 partial molar conversions of VDF and 1234yf are defined as follows:

$$\xi_2 = w (\mu+F) / (\mu+f)$$
 and $\xi_1 = \xi_2 (f/F)$, respectively;

w is the weight conversion

Table S1 Parameters for extended Kelen-Tüdös plot for the determination of VDF and 1234yf's

 reactivity ratios in the free radical copolymerization of these comonomers

f_{VDF}	f _{1234yf}	x	F_{VDF}	<i>F</i> _{1234yf}	Х	G	Н	η	ξ
0	1.00	0	0	1	0				
0.55	0.45	1.222	0.19	0.81	0.235	-3.988	6.368	0.838	-0.597
0.85	0.15	5.667	0.62	0.38	1.632	2.193	19.681	0.489	0.358
0.90	0.10	9.000	0.82	0.18	4.556	7.024	17.780	0.239	0.891
0.95	0.05	19.000	0.94	0.06	15.667	17.787	23.042	0.162	1.466
1.00	0		1.00	0					

* symbol represents undefined values

Fig. S1 Representative ¹H NMR spectrum of poly(VDF-*co*-1234yf) copolymer prepared by free radical copolymerization of VDF and 1234yf using *tert*-butyl peroxypivalate (TBPPi) in 1,1,1,3,3-pentafluorobutane (PFB) at 74 °C (P4, Table 1), recorded in acetone- d_6 at 20 °C. (* Solvent (acetone) peak).

Fig. S2 TGA thermograms of poly(VDF-*co*-1234yf) copolymers (P1-P5, Table 1), heated at 10 °C min⁻¹ under air.

Fig. S3 Pictures of flasks containing poly(VDF-*co*-1234yf) copolymers: from left to right: P1, P2, and P4 copolymers (see Table 1 for the polymerization conditions and characterization data).

Fig. S4 ¹⁹F NMR spectrum (recorded in acetone- d_6 at 20 °C) of C₆F₁₃poly(VDF-*co*-1234yf)-I copolymers (**P10**, Table 2).

Fig. S5 ¹H NMR spectrum (recorded in acetone- d_6 at 20 °C) of P11 copolymer produced after radical addition of iodo poly(VDF-*co*-1234) P10 onto allyl alcohol.

Fig. S6 ¹⁹F NMR spectrum (recorded in acetone- d_6 at 20 °C) of P11 copolymer achieved after the radical addition of iodo poly(VDF-*co*-1234) P10 onto allyl alcohol (with uncorrected chemical shifts of ca. 3 ppm).

Fig. S7 FTIR spectrum (KBr at 20 °C) of P11 copolymer produced after radical addition of iodo poly(VDF-*co*-1234) cooligomer P10 onto allyl alcohol (frequency at 1710 cm⁻¹ is assigned to unevaporated of acetone).

Fig. S8 ¹H NMR spectrum (recorded in acetone- d_6 at 20 °C) of hydroxyl poly(VDF-*co*-1234) cooligomer P12 achieved after reduction of iodhydrin P11.

Fig. S9 ¹⁹F NMR spectrum (recorded in acetone- d_6 at 20 °C) of hydroxyl poly(VDF-*co*-1234) cooligomer P12 achieved after reduction of iodhydrin P11 (with uncorrected chemical shifts of ca. 3 ppm).

Fig. S10 FTIR spectrum of hydroxyl poly(VDF-*co*-1234) final product (P12) achieved after reduction of iodhydrin P11 (frequency at 1717 cm⁻¹ is assigned to acetone).