Well-defined poly(vinylidene fluoride) (PVDF) based-dendrimers synthesized by click chemistry: enhanced crystallinity of PVDF and increased hydrophobicity of PVDF films

Enrique Folgado,^{a,b} Marc Guerre,^c Christian Bijani,^{a,b} Vincent Ladmiral,^c Anne-Marie Caminade,^{a,b} Bruno Ameduri*^c and Armelle Ouali*^{a,b}

Supporting Information

Table of contents

<u>S1. Materials and Methods</u>	2
S2. Procedures for preparation and characterization of compounds 2-5	4
Synthesis and characterization of propargyloxyphenol $\underline{2}$	4
Synthesis and characterization of PPH dendrimer bearing propargylic durface functions $\underline{3}$	4
Synthesis and characterization of PVDF-N ₃ $\underline{4}$	4
Synthesis and characterization of dendritic PVDF 5	8
S3. Selected ¹ H, ¹³ C, ³¹ P NMR and MALDI-TOF mass spectra	9
¹ H NMR spectrum of <u>2</u>	9
¹ H NMR spectrum of $\overline{3}$	10
³¹ P NMR spectrum of $\underline{3}$	11
Experimental and simulated MALDI-TOF mass spectrum of <u>3</u>	12
Experimental MALDI-TOF mass spectrum of <u>4</u>	13
Simulated MALDI-TOF mass spectrum of <u>4</u>	14
¹ H NMR spectrum of <u>5</u>	18
Comparison of ¹ H NMR spectra of <u>3</u> , <u>4</u> , <u>5</u>	19
ROESY spectrum of <u>5</u>	20
Monitoring of the nucleophilic substitution of P-Cl bonds of dendrimer 1 by phenol 2 by using ³¹ P NMR	20
³¹ P NMR spectrum of <u>5</u>	21
¹⁹ F NMR spectrum of <u>5</u>	22
S4. Dynamic Light Scattering	23
S5. High Resolution Transmission Electron Microscopy (HRTEM),	
Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X-ray (E	DX) 25
S6. Thermogravimetric Analyses (TGA) Differential Scanning Calorimetry (DSC)	
of 3, 4 and 5	27

S1. Materials and Methods

• Chemicals and purification methods.

Chemicals were purchased from Aldrich, Acros, Fluka, Alfa Aesar and Strem, and were used without further purification, except for $P_3N_3Cl_6$ which was recrystallized from hexane, 4-hydroxybenzaldehyde which was recrystallized from diethyl ether. Organic solvents were dried and distilled according to usual procedures.¹ Phosphorhydrazone dendrimers (PPH) dendrimers were synthesized according to published procedures.²

Purifications by column chromatography were performed on silica gel (60 Å, 53-250 μ m) or on an automatic Flash chromatography system, SPOTTM II Ultimate. TLCs were performed on silica gel 60 F254 plates and detection was carried out under UV light or using appropriate dyeing reagent.

• NMR

Most of **NMR** spectra were recorded with Bruker AV 300 and AV 400. All spectra were measured at 25 °C in the indicated deuterated solvents. References for NMR chemical shifts were H_3PO_4 (85%) for ³¹P NMR, and SiMe₄ for ¹H and ¹³C NMR spectroscopy.¹H, ¹³C and ³¹P chemical shifts (δ) are reported in ppm and coupling constants (J) are reported in Hertz (Hz). The signals in the spectra are described as s (singlet), d (doublet), t (triplet), m (multiplet) and br (broad resonances).

Some experiments (DOSY, ROESY, HSBC and HMBC) were recorded on a Bruker Avance 500 spectrometer equipped with a 5 mm triple resonance inverse Z-gradient probe (TBI 1H, 31P, BB). All chemical shifts for 1H were relative to TMS using 1H (residual) chemical shifts of the solvent as a secondary standard.

- Diffusion ordered spectroscopy (DOSY) NMR was used to measure the translational diffusion coefficient D. The DOSY spectra were acquired at 291K with the stebpgp1s pulse program from Bruker topspin software. All spectra were recorded with 16K time domain data point in the t2 dimension and 16 t1 increments. The gradients strength was linearly incremented in 16 steps from 2% up to 95% of the maximum gradient strength. All measurements were performed with a compromise diffusion delay Δ of 220ms and a gradient pulse length δ of 3,2ms (error on the diffusion coefficient: below 5%). For these experiments, the cycloaddition reaction was performed in deuterated THF and the crude was directly analyzed.

- For ROESY experiment, spectra were acquired at 293K using a mixing time of 200 ms, 16 averages for each t1 value after 4 dummy scans, a datum set of 2048 time domain data point in the t2 dimension with 256 t1 increments, and the States-TPPI method for quadrature detection in the t1 dimension.

- 1H spectra were recorded at 293K, using the following parameters: spectral width, 13 ppm; 30° nutation angle duration, 6.7µs; recycling delay, 3-s (2-s acquisition time and 1-s relaxation delay).

- Two-dimensional experiments including heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC) were acquired with a data point of 2 K \times 256 (t2 \times t1). The long-range coupling time for HMBC was 63 ms.

• Fourier Transform Infrared

FTIR analyses were performed using a PerkinElmer Spectrum 1000 in ATR mode, with an accuracy of ± 2 cm⁻¹.

• Mass spectrometry

Mass spectroscopy was carried out on a Thermo Fisher DS QII (DCI/NH₃), GTC Premier Waters (DCI/CH₄) or with Maldi Micro MX Waters (Maldi/DCTB).

• Dynamic Light scattering

Dynamic Light Scattering (DLS) experiments were performed at 25 °C on a Malvern instrument Nano-ZS (ZEN3600, UK) equipped with a He-Ne laser as the light source ($\lambda = 633$ nm). The scattered light was detected at the scattering angle of $\nu = 173^{\circ}$. Samples of THF solutions of dendrimers (10 mg mL⁻¹)³ were introduced into cells (pathway, 10 mm) after filtration through 0.45 lm PTFE microfilters.

The apparent equivalent hydrodynamic radius (Rh) was determined using the Stokes–Einstein equation (Rh= $k_BT/6\pi nD$), where n is the diluent viscosity (0.48 for THF). Hydrodynamic radius values were obtained from three different runs. Standard deviations were evaluated from radius distribution and were equal to 1.3 nm as a maximum for dendrimer <u>5</u> and to 0.2 nm as a maximum for dendrimer <u>3</u>.

¹ D. D. Perrin et W. L. F. Almerego, *Purification of Laboratory Chemicals 3rd Ed.*, Pergamon Press. Oxford, 1998.

² N. Launay, A.-M. Caminade, J.-P. Majoral, J. Organomet. Chem. 1997, 529, 51.

³ For these experiments, the crude reaction medium was directly analyzed, re-solubilization of dry star polymer 5 being difficult in THF.

• Size exclusion chromatography

Size exclusion chromatograms (SEC) were recorded using a triple detection GPC from Agilent Technologies with its corresponding Agilent software, dedicated to multi-detector GPC calculation. The system used two PL1113-6300 ResiPore 300 x 7.5 mm columns with DMF (containing 0.1 wt % of LiCl) as the eluent with a flow rate of 0.8 mL.min-1 and toluene as flow rate marker (compounds **3**, **4** and **5** were also analyzed by using THF as the eluent). The detector suite comprised a PL0390-0605390 LC light scattering detector with 2 diffusion angles (15° and 90°), a PL0390-06034 capillary viscosimeter, and a 390-LC PL0390-0601 refractive index detector. The entire SEC-HPLC system was thermostated at 35°C. PMMA standards were used for the calibration. The typical sample concentration was 10 mg/mL.

• HR Transmission electron microscopy

High resolution transmission electron microscopy (**HRTEM**), scanning transmission electron spectroscopy (**STEM**) and energy dispersive X-ray (**EDX**) were performed at the "Service Commun de Microscopie Electronique de l'Université Paul Sabatier" (UPS-TEMSCAN) and recorded on a JEOL JEM 2100 F electron microscope working at 200 kV with a resolution point of 2.5 Å and equipped with X-ray analysis PGT (light elements detection, resolution 135 eV). Samples for **HRTEM** analyses were prepared by slow evaporation of a drop of crude colloidal solution deposited onto holey carbon-covered copper grids. On the EDX spectra, Cu signals are due to the grids on which the samples were deposited and Si signals were found to come from the preparation of samples.

• Thermogravimetric Analyses

TGA analyses were carried out on 10-15 mg samples on a TGA Q50 apparatus from TA Instruments from 20 °C to 580 °C, in platinum pans, at a heating rate of 10 °C min⁻¹, under air. *A thermal degradation temperature at 5% weight loss (T_d 5%) was arbitrarily chosen.*

• Differential Scanning Calorimetry

DSC measurements were performed on 10-15 mg samples on a Netzsch DSC 200 F3 instrument using the following heating/cooling cycle: cooling from room temperature (ca. 20 °C) to -50 °C at 20 °C/min, isotherm plateau at -50 °C for 5 min, first heating ramp from -50 to 200 °C at 10 °C/min, cooling stage from 200 to -50 °C at 10 °C/min, isotherm plateau at -50 °C for 3 min, second heating ramp from -50 °C to 200 °C at 10 °C/min and last cooling stage from 200 °C to room temperature (ca. 20 °C). The instrument was calibrated with noble metals and checked before analysis with an indium sample. Glass transition temperatures were assessed as the inflexion point in the heat capacity jump while melting points were determined at the maximum of the enthalpy peaks.

• Water Contact Angle and Spin Coating

WCA measurements were carried on the polymer thin film prepared by spin-coating (acceleration time: 10 s, rpm = 3000, time = 1.30 min) from THF crude product on glass slides followed by drying at room temperature for 1 h. WCA measurements were carried out on Contact Angle System OCA-Data Physics using the water sessile drop method at ambient temperature. The probe liquid was water (θ_{H2O}) and the average CA value was determined from five different drops per sample of 5.0 µL deposited on the same sample. The experiments were repeated on two samples for each compound.

S2. Procedures for preparation and characterization of compounds 2-5.

Synthesis of propargyloxyphenol $\underline{2}$ (procedure adapted from reference 4) (M = 148.05)

To a solution of hydroquinone (25.00 g, 227.0 mmol) in dry acetone (125 mL) refluxed for 30 min at 65°C, was added anhydrous K₂CO₃ (31.38 g, 227,0 mmol) and the mixture was refluxed for 45 min. To this mixture, propargyl bromide (7.02 g, 59.0 mmol) was added dropwise over a period of 5 h. The resulting mixture was refluxed for an additional period of 24 h and then cooled, filtered and the filtrate was evaporated. The brown oily residue was dissolved in CH₂Cl₂ (125 mL) and the solution was washed with water (2 x 50 mL) followed by saturated brine solution (50 mL). The organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product consisted in a mixture of unreacted hydroquinone, propargyloxyphenol and bispropargyloxybenzene which were separated by column chromatography on silica gel using hexane/ethyl acetates (8:2). Propargyloxyphenol was obtained as a yellow oil (5.25 g, 60% yield). **IR-ATR** (cm⁻¹): 3285 (vC=C), 2121 (v C=C-H).

¹**H NMR (300 MHz, CDCl₃, 25°C):** δ (**ppm**) 6.88 and 6.99 (m, 4H), 4.61 (d, 2H, J = 2.44 Hz, C⁵-H), 2.48 (t, 1H, J = 2.44 Hz, C⁷-H).

Synthesis of PPH dendrimer bearing propargylic surface functions 3^{5} (M = 3167.97)

 Cs_2CO_3 (1,28 g, 3.936 mmol) was added to a THF (20 mL) solution of the dendrimer **1** (300 mg, 0.164 mmol) and propargyloxyphenol (320 mg, 2,167 mmol). The reaction mixture was stirred at 40°C until the reaction was complete (24 h, monitored by 31P{1H} NMR). Inorganic salts were filtered through a Celite® pad and the residual solvent was evaporated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 7:3 to 5:5 pentane/ethyl acetate. Dendrimer **3** was obtained as a white foam (390 mg, 75 %).

¹H NMR (400 MHz, CDCl₃, 25°C): δ (ppm) 7.63 (d, 12 H, C₀³), 7.58 (s, 6 H, C₀⁵-H), 7.11 (d, 24 H, C₁²-H), 7.02 (d, 12 H, C₀²-H), 6.86 (d, 24 H, C₀²-H), 4.60 (d, J = 2.4 Hz, 24 H, C₁⁵-H), 3.24 (d, J = 10.2 Hz, 18 H, Me₀), 2.50 (t, J = 2.4 Hz, 12 H, C₁⁷-H) ppm.

³¹P{1H} NMR (121.5 MHz, CDCl₃, 25°C): δ (ppm) 63.94 (P₁), 8.41 (P₀). MALDI TOF-MS (matrice): m/z: 3168 [M+H]⁺ (spectrum below). GPC (in THF) using light scattering detector: Mw = 2598, Mn=2547, D = 1.02

Synthesis of PVDF-N₃4:

(i) Synthesis of 2-azidoethanol

2-bromoethanol (10.0 g, 77.3 mmol) and sodium azide (7.66 g, 118 mmol) were dissolved in a mixture of acetone (120 mL) and DI water (30 mL) and the resulting solution was left under stirring and reflux for 16 h. Acetone was then removed under vacuum, 100 mL of DI water was added and the expected 2-azidoethanol was extracted with 3 x 100 mL of diethyl ether. The organic layers collected were then dried over MgSO₄ and, after removal of solvent under reduced pressure, 2-azidoethanol was isolated as a colourless oil. (5.0g, 74 %).

¹**H NMR (400 MHz, (CD₃)₂CO, 25**°**C):** δ (ppm) 3.32 (2H, t, J = 5.1 Hz, N₃-CH₂-CH₂-OH), 3.72 (2H, q, J = 4.9 Hz, N₃-CH₂-CH₂-OH), 4.21 (2H, t, J = 5.4 Hz, N₃-CH₂-CH₂-OH).

⁴ M. Srinivasan, S. Sankararaman, H. Hopf, I. Dix, P. G. Jones. J. Org. Chem. 2001, 66, 4299-4303.

⁵ E. Cavero, M. Zablocka, A.-M. Caminade, J.-P. Majoral. Eur. J. Org. Chem. 2010, 2759–2767.

(ii) Synthesis of 2-azidoethyl-2-bromopropanoate

A solution of 2-bromopropionate bromide (18.6g, 86.3 mmol) in 25 mL of dry THF was added drop wise to a solution of 2-azidoethanol (5.0 g, 57 mmol) and (8.7 g, 86 mmol) in 90 mL of dry THF at 0°C. After complete addition, the reaction mixture was allowed to stir for 1 hour at 25 °C. The excess of 2-bromopropionate bromide was quenched with 17 mL of methanol. The precipitated salt of triethylammonium bromide was filtered on Celite® and the solvents (MeOH and THF) were remove under vacuum. The crude product was dissolved in 100 mL of dichloromethane, washed twice with a solution of saturated ammonium chloride, and twice with a saturated solution of potassium carbonate. The DCM solution was dried on MgSO₄ and the solvent was removed under vacuum until constant weight yielding a yellow oil (8.68 g, 68 %).

 $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO): 1.81 (3H, d, J = 6.8 Hz, N₃-CH₂-CH₂-O(C=O)-CH(CH₃)-Br), 3.61 (2H, d, J = 5.1 Hz, N₃-CH₂-CH₂-O(C=O)-CH(CH₃)-Br), 4.34 (2H, t, J = 4.8 Hz, N₃-CH₂-CH₂-O(C=O)-CH(CH₃)-Br), 4.6 (1H, q, J = 6.9 Hz, N₃-CH₂-CH₂-O(C=O)-CH(CH₃)-Br).

(iii) Synthesis of 2-azidoethyl-(carbonothioyl)thio)propanoate

2-azidoethyl-2-bromopropanoate (8.7g, 39 mmol) and potassium ethyl xanthogenate (30.0g, 187 mmol) were dissolved in 180 mL of CHCl₃ and the heterogenous mixture was left under vigorous stirring 3 days at 30 °C. The excess xanthogenate salt was removed by filtration on Celite® and the organic solution was washed twice with 100 mL of DI water The solution was dried on MgSO₄ and the solvent was removed under vacuum. The crude product was then purified using flash chromatography (SiO₂, Cyclohexane/ Ethyl Acetate (90 :10)). The product was isolated as an odorless yellowish oil (6.6 g, 64 %). $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO): 1.41 (3H, t, J = 7.0 Hz, N₃-CH₂-CH₂-O(C=O)-CH(CH₃)-S(C=S)-OCH₂-CH₃), 1.57 (3H, t, J = 7.4 Hz, N₂-CH₂-CH₂-O(C=O)-CH(CH₃)-S(C=S)-OCH₂-S(C=S)-OCH₂-CH₂-CH₂-CH₂-O(C=O)-CH(CH₃)-S(C=S)-OCH₂-S(C=S)-S(C=S)-S(C=S)-S(C=S)-S(C=S)-S(C=S)-S(C

 $\begin{array}{l} N_3-\text{CH}_2-\text{CH}_2-\text{O}(\text{C=O})-\text{CH}(\text{CH}_3)-\text{S}(\text{C=S})-\text{O}\text{CH}_2-\text{CH}_3), 3.61 \ (2\text{H}, \text{t}, \text{J}=5.3 \text{ Hz}, \text{N}_3-\text{CH}_2-\text{CH}_2-\text{O}(\text{C=O})-\text{CH}(\text{CH}_3)-\text{S}(\text{C=S})-\text{O}\text{CH}_2-\text{CH}_3), 4.33 \ (2\text{H}, \text{t}, \text{J}=5.0 \text{ Hz}, \text{N}_3-\text{CH}_2-\text{CH}_2-\text{O}(\text{C=O})-\text{CH}(\text{CH}_3)-\text{S}(\text{C=S})-\text{O}\text{CH}_2-\text{CH}_3), 4.45 \ (1\text{H}, \text{q}, \text{J}=7.6 \text{ Hz}, \text{N}_3-\text{CH}_2-\text{CH}_2-\text{O}(\text{C=O})-\text{CH}(\text{CH}_3)-\text{S}(\text{C=S})-\text{O}\text{CH}_2-\text{CH}_3), 4.66 \ (2\text{H}, \text{q}, \text{J}=7.1 \text{ Hz}, \text{N}_3-\text{CH}_2-\text{CH}_2-\text{O}(\text{C=O})-\text{CH}(\text{CH}_3)-\text{S}(\text{C=S})-\text{O}\text{CH}_2-\text{CH}_3). \end{array}$

Figure S1. ¹H NMR spectrum of 2-azidoethyl-(carbonothioyl)thio)propanoate RAFT agent recorded in (CD₃)₂CO

Autoclave

The polymerization of VDF was performed in a 100 mL Hastelloy Parr autoclave systems (HC 276), equipped with a mechanical Hastelloy stirring system, a rupture disk (3000 PSI), inlet and outlet valves, and a Parr electronic controller to regulate the stirring speed and the heating. Prior to reaction, the autoclave was pressurized with 30 bars of nitrogen to check for leaks. The autoclave was then put under vacuum (20 10⁻³ bar) for 30 minutes to remove any trace of oxygen. A degassed solution of solvent, initiator and the chain transfer agent was introduced via a funnel under vacuum. The reactor was then cooled down using a liquid nitrogen bath, and VDF was transferred by double weighing (i.e. the mass difference before and after filling the autoclave with VDF). After warming up to ambient temperature, the autoclave was heated to the targeted temperature under mechanical stirring.

(iv) Synthesis of 4.

RAFT Homopolymerization of Vinylidene Fluoride (VDF) using azide RAFT agent

Using the experimental setup described above, a typical polymerization of VDF was performed as follows: A solution of *tert*-amyl peroxy-2-ethylhexanoate (Trigonox 121, 144 mg, 6.25 10^{-4} mol) and 2-azidoethyl-(carbonothioyl)thio)propanoate (CTA-N₃, 1.64 g, 6.25 10^{-3} mol) in dimethylcarbonate DMC (60 mL), was degassed by N₂ bubbling during 30 min. This homogenous solution was introduced into the autoclave using a funnel, VDF gas (20.0 g, 3.12 10^{-1} mol) was transferred in the autoclave at low temperature, and the reactor was gradually heated to 73 °C. The reaction was stopped after 20 h. During the reaction, the pressure increased to a maximum of 25 bars and then decreased to 10 bars after 24 h. The autoclave was cooled down to room temperature (ca. 20 °C), purged from the residual monomers and dimethylcarbonate was removed under vacuum. The crude product was dissolved in 30 mL of warm THF (ca. 40 °C), and left under vigorous stirring for 30 minutes. This polymer solution was then precipitated from 400 mL of chilled hexane. The precipitated polymer (white powder) was filtered through a filter funnel and dried under vacuum (15 10^{-3} bar) for two hours at 50°C. The polymerization yield was determined by gravimetry. (yield = 35%).

 δ_{H} (400 MHz, (CD₃)₂CO): 1.23-1.29 (d, -CH(CH₃)(C=O)-, ³J_{HH}= 7.3 Hz), 1.40-1.46 (t, -S(C=S)O-CH₂-CH₃, ³J_{HH}= 7.2 Hz), 2.25-2.44 (m,-CF₂-CH₂-CF₂-, VDF-VDF TT reverse addition), 2.71-3.20 (t, -CF₂-CH₂-CF₂-, VDF-VDF HT regular addition), 3.30-3.50 (quintet, -CF₂-CH₂-CF₂-S(C=S)OEt, ³J_{FH}= 16.2 Hz), 3.52-3.63 (t, -CH(CH₃)(C=O)-O-CH₂-CH₂-N₃, ³J_{HH}= 5.1 Hz), 4.02-4.17 (t, -CF₂-CH₂-S(C=S)OEt, ³J_{HF}= 18 Hz), 4.21-4.35 (t, -CH(CH₃)(C=O)-O-CH₂-CH₂-N₃, ³J_{HH}= 5.6 Hz), 4.66-4.82 (q, (-S(C=S)O-CH₂-CH₃-CH₃-2, Hz), 6.05-6.45 (tt, ²J_{HF}= 55 Hz, ³J_{HH}= 4.6 Hz -CH₂-CF₂-H)

 δ_F (376 MHz, (CD₃)₂CO): -115.63 (-CH₂-CF₂-CF₂-CH₂-CH₂-, VDF-VDF HH reverse addition), -114.29 (²J_{HF}= 55 Hz, -CH₂-CF₂-H), -113.34 (-CH₂-CF₂-CH₂-CH₂-CH₂-, HH reverse addition), -113.09 (CH₂-CF₂-CF₂-CH₂-S-), -112.69 (-CH₂-CF₂-CF₂-CH₂-S-), -94.79 (-CH₂-CF₂-CF₂-CH₂-), -93.50 (-CH₂-CF₂-CH₂-CH(CH₃)(C=O)-), -92.12 (-CH₂-CF₂-CH₂-CF₂-H), 91.95 (-CH₂-CF₂-CF₂-CH₂-CF₂-CH₂-CF₂-CH₂-CF₂-CF₂-

Figure S2. Expansion of the 0.9-5.2 ppm region of the ¹H NMR spectrum in $(CD_3)_2CO$ of PVDF-N₃ homopolymer (4) synthesized by RAFT polymerization. Protons were assigned according to our previous study.⁶

(1)
$$DP = \frac{\int_{2.71}^{3.21} \text{CH}_2(\text{HT}) + \int_{2.25}^{2.44} \text{CH}_2(\text{TT}) + \int_{4.02}^{4.17} \text{CH}_2(\text{End} - \text{group})}{2/3 \times \int_{1.19}^{1.24} \text{CH}_3(\text{R} - \text{CTA})}$$

(1)
$$DP = \frac{62.75 + 1.91 + 1.72}{2/3 \times 3} = 33$$

(2)
$$M_{n,NMR}(\mathbf{R}) = M_{n,CTA} + (DP \times M_{n,VDF})$$

(2) $M_{nNMR}(R) = 208.3 + (33 \times 64.04) = 2400 \ g. \ mol^{-1}$

Where $M_{n \ CTA} = 208.3 \ g.mol^{-1}$ and $M_{n \ VDF} = 64.04 \ g.mol^{-1}$

Figure S3. Expansion of the -84.5 to -122 ppm region of the ¹⁹F NMR spectrum of PVDF-N₃ homopolymer (4) synthesized via RAFT polymerization (recorded in $(CD_3)_2CO$ at room temperature).

⁶ (a) M. Guerre, G. Lopez, T. Soulestin, C. Totée, B. Améduri, G. Silly, V. Ladmiral, *Macromol. Chem. Phys.*, DOI: 10.1002/macp.201600109.

Synthesis of dendritic PVDF 5:

To a suspension of CuI (0.7 mg, 3.8 μ mol) and *N*,*N*-diisopropylethylamine (26 μ l, 151.2 μ mol) in THF (0.5 mL) was added a solution of dendrimer **3** (20 mg, 6.3 μ mol) in THF (0.5 mL). PVDF-N₃ **4** (170 mg, 77.2 μ mol) was added and the mixture was diluted in THF (3.5 mL). The reaction mixture was stirred at 40°C for 24 h, and the progress of the reaction was monitored by ³¹P {1H} and ¹H NMR. Inorganic salts were hot filtered through a Celite® pad and the residual solvent was evaporated under reduced pressure. The crude product was washed several times with cold THF to remove the excess of **4**. **5** was obtained as a brown powder (177 mg, 95% yield).

The molar mass and molar mass distribution of this dendrictic PVDF could not be assessed by GPC.

Indeed, the determination of the molar mass and molar mass distribution using GPC requires a concentration detector such as a RI detector. PVDF gives a negative signal using a RI detector in DMF (or THF) while PPH gives a positive signal in the same conditions. In consequence, the RI GPC trace of the dendritic PVDF **5** cannot be used to give a correct assessment of the molar mass or molar distribution. However, the monomodal shape of the GPC trace and the shift toward high molecular weight of the dendritic PVDF suggests a good addition of the PVDF chains onto the acetylenic dendrimer.

¹**H NMR (400 MHz, DMSO, 20°C):** δ (**ppm**) 8.19 (s, 12 H, C₁⁷, protons of the triazolic ring), 7.84 (s br, 6 H, C₀⁵-H), 7.67 (s br, 12 H, C₀³-H), 7.05 (d br, 36 H, C₀²-H, C₁²-H), 6.95 (d br, 24 H, C₁³-H), 5.04 (s br, 24 H, C₁⁵-H), 4.67 (q, 24 H, C¹⁶-H), 4.62 (m, 24 H, C₁⁸-H), 4.32-4.51 (m, 24 H, C₁⁹-H), 4.08 (t br, S-C¹⁴H₂-CF₂), 3.23 (m, Me₀), 2.70-3.05 (m, C¹⁴-H PVDF chain), 2.67 (s br, C¹¹-H), 1.37 (t br, 36 H, C¹⁷-H), 1.04 (d br, 36 H, C¹²-H).

¹³C NMR (125 MHz, DMSO, 20°C): δ (ppm) 211.00 (C=S), 174.85 (C=O), 155.94 (C₁⁴), 151.20 (C₀¹), 144.35 (C₁¹), 143.10 (C₁⁶), 140.20 (C₀⁵), 132.30 (C₀⁴), 128.65 (C₀³), 125.20 (C₁⁷), 122.37 (m, C¹³), 121.33 (C₀²), 121.31 (C₁²), 115.99 (C₁³), 71.92 (C¹⁶), 62.89 (C₁⁹), 62.04 (C₁⁵), 48.97 (C₁⁸), 40.20 (C¹⁴), 33.57 (C¹¹), 33.28 (Me₀)18.31 (C¹²), 13.75 (C¹⁷). ³¹P{1H} NMR (121.5 MHz, DMSO, 20 °C): δ (ppm) 64.3 (P₁), 8.3 (P₀).

 $F{11}$ NMR (121.5 MHz, DMSO, 20°C); 0 (ppiii) 04.5 (F1), 0.5 (F0).

¹⁹F{1H} NMR (376 MHz, DMSO, 20 °C): δ (ppm) see pages 7 and 22.

S3. Selected ¹H, ¹³C, ³¹P, ¹⁹F NMR and MALDI-TOF mass spectra

¹H NMR spectrum of 2 (CDCl₃)

¹H NMR spectrum of <u>3 (CDCl</u>₃)

MS spectrum (MALDI-TOF-MS) for PVDF-N₃ (compound <u>4</u>)

Experimental spectrum:

Data file: E:/Sarwagardeh//LD/IO/16/16/05/7/100527/PF_D/Intanol_Malf is/w monecome. Permit Permit Permit Math Inference TOF mode +/_0.400Taat 1000 m/s Honopolymer Results Summay Honopolymer Results Summay Honopolymer Results Summay Math Inference TOF mode +/_0.400Taat 1000 m/s Honopolymer Results Summay Honopolymer Results Summay Honopolymer Results Summay Section Jama Mark Honopolymer Results Summay Honopolymer Results Summay Section Jama Mark Mark Honopolymer Results Summay Section Jama Mark Mark Mark Mark Section Mark Mark Mark Mark Mark	Polymerix Proce Homopolymer A Printed: Wed M	sssing Report malysis Resul ay 27 2015 12	ts :41:32							
Series Laboration Laboratio Laboration Laboration Laboration Laboration Labo	Data file: E'\Sau Monoisotopic ma Match tolerance	/egardeMALDI iss mode TOF mode +/- (\2015\150527 0.400 Da at 1(1150527_PF_D 000.0 m/z	bithranol_Nal.re	ME				
Surfate Laboration (Laboration) math Laboration (Laboration) math Laboration) math Laboration) math Laboration) math Laboration) math Laboration) math Laboration) <thmath laboration)<="" th=""> math Laboration)</thmath>	·		т	lomopolymer	Results Sumr	ıary				
Series Alpha Labol Charge Labol Charge Labol <thcharge Labol Charge Labol</thcharge 	Series Label Total/Average S1	Min 1286.285 1286.285	MW 1389.080 1389.080	MZ 1492.960 1492.960	PD D1 1.080 15 1.080 15	Pn DPW .985 17.59 .985 17.55	DPz 11 19.214	Percent Series 100.00 100.00	Percent Spectrum 20.23 20.23	
Series Series Tobul Tobul Tobul NGC58002 [C2R2P2]n \$200385 + Na Tobul Average NGC58002 [C2R2P2]n \$200345 + Na Tobul Average NGC58002 [C2R2P2]n \$200345 + Na Tobul Average NGC58002 [C2R2P2]n \$200345 + Na Scrient Nucleon NGC58002 [C2R2P2]n \$200345 + Na Average Series Series Spactrum Na	Series Label Total/Average S1	Alpha End Group N3C5H8O2 N3C5H8O2	202	peat 112F2 112F2	Omega End Groi S20C3H5 S20C3H5	4	Charge State 1	Adduct Na Na	Loss	
Homopolymer Analysis Details Apertant Found Weighted Found Series Spectrum Mage to a series Spectrum Count Weighted Found Spectrum Mage to a series Spectrum Spectrum <th colspa<="" td=""><td>Series Label Total/Average S1</td><td>Series Formula N3C5H802 [N3C5H802 [</td><td>C2H2F2]n \$2C C2H2F2]n \$2C</td><td>OC3H5 + Na OC3H5 + Na</td><td></td><td></td><td></td><td></td><td></td></th>	<td>Series Label Total/Average S1</td> <td>Series Formula N3C5H802 [N3C5H802 [</td> <td>C2H2F2]n \$2C C2H2F2]n \$2C</td> <td>OC3H5 + Na OC3H5 + Na</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Series Label Total/Average S1	Series Formula N3C5H802 [N3C5H802 [C2H2F2]n \$2C C2H2F2]n \$2C	OC3H5 + Na OC3H5 + Na					
Series Tabel: S1Series Tabel: S1Secent Percent Percen			т	lomopolymer .	Analysis Detai	ŝ				
RepeatPercentComputedFoundMagned50.77000.1557 m/z m/z m/z m/z 60.77100.1557606.092606.373606.373 $z004.20$ 711.75950.1847670.104670.393670.393 $z700.205.05$ 80.59550.359798.110734.403734.413734.4037397.5692.966600.579798.129798.376798.376109077.56117.16971.063510.043926.457926.457926.4571281.76971.663510.054.478862.439926.457137.16971.663510.0647926.457926.457926.457137.16971.663510.64179926.457926.457926.457137.160181.56351054.1791054.4781054.70147.160181.56351018.1921118.1921118.192156.99261.141231246.5171246.5171246.517166.57331.246.5171246.5171246.5171246.517175.69381.141231310.5291310.5291311.5555.21185.69381.141231374.5491734.545172125.66194.55511.0348.5221438.5521348.5521348.552194.55511.0349.5521348.5521348.5521348.552194.55610.91181566.5941566.594 <td>Series Label:</td> <td>S1</td> <td></td> <td></td> <td></td> <td>• • •</td> <td>•</td> <td></td> <td></td>	Series Label:	S1				• • •	•			
5 0.7700 0.1557 606.092 606.373 606.373 21004.20 7 1.7595 0.31847 670.104 670.333 670.333 670.333 670.333 734.013 734.02 7997.05 8 3.9985 0.31559 734.117 734.403 734.403 71997.99 71997.05 9 2.8660 0.5797 862.142 862.439 766.457 926.457 926.457 13556.34 11 7.1604 1.4502 990.167 90.466 990.466	Repeat Count	Percent Saries	Percent Spectrum	Computed m/z	z/u	weignted m/z	Ĩ	round tensity		
6 0.9129 0.1847 670.104 670.393 670.393 670.393 24005.05 7 1.7595 0.3559 734.117 734.403 793.703 1403 7997.99 9 2.8660 0.5797 862.142 862.439 862.439 862.439 784.403 7997.99 11 7.1661 10.043 926.154 926.457 926.457 19587.70 12 1.1502 990.167 900.466 990.466 990.466 1990.756 13 7.9009 1.5981 1118.192 1054.478 105587.49 14 7.6018 1.535 1054.179 1054.478 223012.41 15 6.1926 1118.192 1118.491 215555.49 17115.50 15 6.2763 1122.20 1118.550 1118.491 215555.49 16 6.2763 1128.505 1118.550 1118.550 1701.525 16 6.9364 1138.550 1131.529 171215.04 155555.49	20000	0.7700	0.1557	606.092	606.373	606.373	21(04.20		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q.	0.9129	0.1847	670.104	670.393	670.393	249	905.05 007 00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α	1.7595 3 0085	8085.U	798.129	798.376	798.376	10901	077.56		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) თ	2.8660	0.5797	862.142	862.439	862.439	78:	184.03		
11 7.1697 1.4502 990.466 1950.87.70 12 8.1750 1.6355 1064.476 1054.476 1054.476 13 7.9099 1.5355 1054.476 1118.491 1118.491 1118.491 14 7.6018 1.5375 1148.256 1142.506 207375.66 15 6.9926 1.4123 1246.517 1246.517 1246.517 1246.517 17 5.6938 1.162.70 1347.549 1310.529 171215.04 18 5.1659 1.0449 1374.549 1374.549 155225.21 18 5.1659 1.0449 1374.549 1562.577 123443.63 19 4.2551 1348.562 1438.562 1438.562 1430238 13 19 4.2551 0.9133 1562.577 123443.63 159325.51 123443.63 20 4.0928 1566.594 1566.554 199928.63 13 12342.13 21 3.5655 1566.554 1569.65	10	4.9654	1.0043	926.154	926.457	926.457	135	456.34 		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	7.1697 8 1750	1.4502 1 6535	990.167 1054.179	990.466 1054.478	990.466 1054.478	1951	012.41		
14 7.6018 1.5376 1182.506 1182.506 1182.506 207375.66 15 6.9026 1.4123 1246.517 1246.517 1246.517 1246.517 16 6.7733 1.2452 1310.529 1310.529 171215.04 17 5.6938 1.2447 1374.549 1374.549 157325.21 18 5.1659 1.0449 13374.549 1374.549 155325.21 19 4.5251 0.9153 10432.266 1438.562 1438.562 1439.562 19 4.5251 0.9153 1502.266 1502.577 123436.65 123438.562 20 4.0999 0.8111 1566.594 15092383 13938.65 21 3.6552 0.77993 1566.594 15092386.53 109338.65 22 3.647 0.6427 1694.304 1694.627 1694.304 1694.267	1 1	7.9009	1.5981	1118.192	1118.491	1118.491	215	535.49		
15 6.9826 1.423 1246.517 1246.517 1246.517 1246.517 1246.517 1246.517 1246.517 1246.517 1246.517 1246.517 1246.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1510.529 1523.52 140923.83 1692.521 1294.525 140923.83 1266.524 1502.577 123443.60 1200.920 18111 1566.594 150923.83 123443.60 20 4.0099 0.8111 1566.594 1502.577 123443.60 123443.60 21 3.6552 0.7393 1630.291 1650.6514 1656.594 109388.63 22 3.2047 0.6482 1694.627 1694.627 8724.13	14	7.6018	1.5376	1182.204	1182.506	1182.506	207	375.66		
17 5.6338 1.1517 1374.549 1374.549 155325.21 18 5.1659 1.0449 1438.256 1438.562 1438.562 1438.562 19 4.5251 0.9153 1502.566 1502.577 1502.577 123443.60 20 4.0099 0.8111 1566.594 1566.594 103988.63 21 3.6552 0.7393 1630.201 1630.611 1630.612 22 3.2047 0.6482 1694.627 1694.627 87424.13	15	6.9826	1.4123 1 2605	1246.216	1246.517	1246.517	171	483.20 215.04		
18 5.1659 1.0449 1438.562 1438.562 140923.83 19 4.5251 0.9153 1502.566 1502.577 123443.60 20 4.0099 0.8111 1566.594 1502.577 123443.60 21 3.6552 0.7391 1566.594 1500.286 150.277 21 3.6552 0.7393 1630.291 1650.611 1630.611 22 3.2047 0.6482 1694.627 1694.627 87424.13	17	5.6938	1.1517	1374.241	1374.549	1374.549	155:	325.21		
19 4.5251 0.9153 1502.566 1502.577 1502.577 12343.60 20 4.0099 0.8111 1566.594 1566.594 109388.63 21 3.5552 0.7393 1530.291 1530.611 1530.613 9712.70 22 3.2047 0.6482 1594.304 1694.627 1594.627 87424.13	18	5.1659	1.0449	1438.254	1438.562	1438.562	140	923.83		
20 4.0099 0.8411 J200.294 1.000.394 1.000.394 9.9712.70 21 3.6552 0.7393 1630.291 1630.611 1630.617 19712.70 22 3.2047 0.6482 1694.304 1694.627 1694.627 87424.13	19	4.5251	0.9153	1502.266	1502.577 1566 504	1502.577 1566 504	123	443.60 200 62		
22 3.2047 0.6482 1694.304 1694.627 1694.627 87424.13	20	4.0099 3.6552	0.7393	1630.291	1630.611	1630.611	66 7	712.70		
	22	3.2047	0.6482	1694.304	1694.627	1694.627	87	424.13		

age 3 of 4

Page 4 of 4	
	67192.58 58727.92 58727.92 38966.06 38966.06 23243.44 116897.39 11032.62 1032.48 11032.48 11032.48
	1822.672 1950.712 2014.740 2014.745 2014.749 2206.813 2206.813 2206.813 22526.956 2590.955 2590.955
	1822.672 1950.656 1950.712 2014.712 2018.765 2206.813 2206.817 2334.868 2334.868 2334.868 2336.956 2550.955 2550.955 2550.955 2550.955
	1822.329 1950.331 1950.353 2078.378 2142.391 2206.403 22334.428 2334.428 2334.428 2334.428 2335.466 2550.478 2550.478
ort sults 12:41:32	0.4982 0.3512 0.2210 0.28892 0.1273 0.1273 0.0135 0.0135 0.0077
rocessing Repr er Analysis Ret d May 27 2015	2.4631 1.7365 1.4228 0.619408 0.51950 0.211515 0.0666 0.0378
olymerix P Iomopolym Printed: We	ある 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Comparison of ¹H spectra for dendrimers <u>3</u> and <u>5</u> and PVDF-N₃ <u>4</u> (DMSO d6)

ROESY Experiment (compound <u>5</u>)

ROESY experiments highlighted spatial correlations between protons 7 (8.19 ppm) and protons 8 (4.62) and 9 (4.32-4.51) which constitutes a further element in favour of a successful cycloaddition.

Monitoring of the nucleophilic substitution of P-Cl bonds of dendrimer 1 by phenol 2 by using ³¹P NMR spectroscopy Substitution of the P-Cl bonds from the $P(S)Cl_2$ end groups by any phenol derivative ArOH (including 2 bearing acetylenic functions, see Figure 1, main text) can easily be monitored by ³¹P NMR on the crude (THF as the solvent in that case). Indeed, intermediate monosubstituted end groups P(S)(Cl)-OAr give rise to a high-shifted singlet at about 68 ppm against about 62 ppm for the starting $P(S)Cl_2$ end groups (figure below). The vanishing of both of these signals and the appearance of a new singlet indicate the completion of the reaction and the disubstitution of all the $P(S)Cl_2$ end groups.

³¹P{1H} NMR spectrum of <u>5 (</u>DMSO d6)

S<u>4. Dynamic Light Scattering</u>

S<u>5. High Resolution Transmission Electron Microscopy (HRTEM), Scanning Transmission</u> Electron Microscopy and Energy Dispersive X-ray

On the EDX spectrum, Cu signals are due to the grids on which the samples were deposited.

STEM analyses

Composition **mapping** was performed using high resolution STEM images. These analyses revealed an homogeneous repartition of atoms belonging to the dendritic PPH skeleton (P, S) and those belonging to the PVDF branches (F, S).

Additional TEM Images

S6. Thermogravimetric Analyses and Differential Scanning Calorimetry

<u>Thermogravimetric Analyses (under air)</u> PPH dendrimer **3**, displaying a very high thermal stability (up to ca. 407 °C), lies among the most stable PPH studied to date.⁷ PVDF-N₃ polymer was found to be stable up to ca. 249 °C. Surprisingly, dendritic PVDF 5 started to decompose from 91 °C. (5 % of weight loss)

⁷ C.-O. Turrin, V. Maraval, J. Leclaire, E. Dantras, C. Lacabanne, A.-M. Caminade, J.-P. Majoral, *Tetrahedron*, 2003, **59**, 3965-3973.

Differential Scanning Calorimetry

DSC PVDF-N₃ 4

DSC PPH-dendrimer <u>3</u>

DSC Dendritic PVDF 5

