## **Supplementary Information**

# Alkyl Substituted Poly(*p*-phenylene vinylene)s by Ring Opening Metathesis Polymerisation

Benjamin J. Lidster, Dharam R. Kumar, Andrew M. Spring,‡ Chin-Yang Yu,§ and Michael. L. Turner.\*

Organic Materials Innovation Centre, School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

‡ Current address: Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen Kasuga, Fukuoka 816-8580, Japan.

§ Current address: Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei, 10607, Taiwan.

\*Corresponding author: E-mail: Michael.Turner@Manchester.ac.uk; Fax: +44-161-275-4273

## Contents

| 1.                                                                                           | General Procedures                                                                                                        |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2.                                                                                           | Synthesis of <i>cis/trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-dioctyl- <i>p</i> -                         |  |  |  |  |  |  |  |
| phe                                                                                          | nylenevinylene)s (P1a-d) and <i>trans</i> -vinylene Poly(p-phenylenevinylene-2,5-dioctyl-p-                               |  |  |  |  |  |  |  |
| phe                                                                                          | phenylenevinylene)s ( <b>P2a-b</b> )                                                                                      |  |  |  |  |  |  |  |
| 3.                                                                                           | Synthesis of <i>cis/trans</i> -vinylene Poly(2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P3a-c</b> )6                 |  |  |  |  |  |  |  |
| 4.                                                                                           | 4. Synthesis of $\alpha$ -Bromoester Functionalised Monotelechelic Poly( <i>p</i> -phenylenevinylene-                     |  |  |  |  |  |  |  |
| 2,5                                                                                          | 2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P4</b> )7                                                                 |  |  |  |  |  |  |  |
| 5.                                                                                           | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of <i>cis/trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-     |  |  |  |  |  |  |  |
| dio                                                                                          | ctyl- <i>p</i> -phenylenevinylene)s ( <b>P1a</b> )8                                                                       |  |  |  |  |  |  |  |
| 6.                                                                                           | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of <i>cis/trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-     |  |  |  |  |  |  |  |
| dio                                                                                          | ctyl- <i>p</i> -phenylenevinylene)s ( <b>P1b</b> )9                                                                       |  |  |  |  |  |  |  |
| 7.                                                                                           | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of <i>cis/trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-     |  |  |  |  |  |  |  |
| dio                                                                                          | ctyl- <i>p</i> -phenylenevinylene)s ( <b>P1c</b> )10                                                                      |  |  |  |  |  |  |  |
| 8.                                                                                           | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of <i>cis/trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-     |  |  |  |  |  |  |  |
| dio                                                                                          | ctyl- <i>p</i> -phenylenevinylene)s ( <b>P1d</b> )11                                                                      |  |  |  |  |  |  |  |
| 9.                                                                                           | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of <i>trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-dioctyl- |  |  |  |  |  |  |  |
| <i>p</i> -p                                                                                  | henylenevinylene)s ( <b>P2a</b> )12                                                                                       |  |  |  |  |  |  |  |
| 10.                                                                                          | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 500 MHz) of <i>trans</i> -vinylene Poly( <i>p</i> -phenylenevinylene-2,5-         |  |  |  |  |  |  |  |
| dio                                                                                          | ctyl- <i>p</i> -phenylenevinylene)s ( <b>P2b</b> )13                                                                      |  |  |  |  |  |  |  |
| 11.                                                                                          | <sup>1</sup> H NMR (C <sub>6</sub> D <sub>6</sub> , 400 MHz) of <i>cis/trans</i> -vinylene Poly(2,5-dioctyl- <i>p</i> -   |  |  |  |  |  |  |  |
| phe                                                                                          | nylenevinylene)s ( <b>P3a</b> )14                                                                                         |  |  |  |  |  |  |  |
| 12.                                                                                          | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 500 MHz) of <i>cis/trans</i> -vinylene Poly(2,5-dioctyl- <i>p</i> -               |  |  |  |  |  |  |  |
| phe                                                                                          | nylenevinylene)s (P3b)                                                                                                    |  |  |  |  |  |  |  |
| 13.                                                                                          | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 500 MHz) of <i>cis/trans</i> -vinylene Poly(2,5-dioctyl- <i>p</i> -               |  |  |  |  |  |  |  |
| phe                                                                                          | nylenevinylene)s ( <b>P3c</b> )16                                                                                         |  |  |  |  |  |  |  |
| 14.                                                                                          | <sup>1</sup> H NMR (CDCl <sub>3</sub> , 400 MHz) of α-Bromoester Functionalised Monotelechelic                            |  |  |  |  |  |  |  |
| Poly( <i>p</i> -phenylenevinylene-2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P4</b> )17 |                                                                                                                           |  |  |  |  |  |  |  |
| 15.                                                                                          | GPC Trace of α-Bromoester Functionalised Monotelechelic Poly(p-                                                           |  |  |  |  |  |  |  |
| phe                                                                                          | nylenevinylene-2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P4</b> )18                                                 |  |  |  |  |  |  |  |

| 16.  | Reactivity of M3 with G3 and G2                                                                          |
|------|----------------------------------------------------------------------------------------------------------|
| 17.  | Measurement of Photoluminescence Quantum Yields of cis/trans-vinylene Poly(p-                            |
| phen | ylenevinylene-2,5-dioctyl-p-phenylenevinylene)s (P1a-d), trans-vinylene Poly(p-                          |
| phen | ylenevinylene-2,5-dioctyl- <i>p</i> -phenylenevinylene)s (P2a-b), <i>cis/trans</i> -vinylene             |
| Poly | (2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P3a-c</b> ) and $\alpha$ -Bromoester Functionalised     |
| Mon  | otelechelic Poly( <i>p</i> -phenylenevinylene-2,5-dioctyl- <i>p</i> -phenylenevinylene)s ( <b>P4</b> )19 |
| 18.  | References                                                                                               |

### **1. General Procedures**

Nuclear magnetic resonance (NMR) spectra were obtained on Bruker spectrometers operating at either 400 or 500 MHz, for <sup>1</sup>H nuclei. Chemical shifts are reported in ppm relative to the indicated residual solvent (<sup>1</sup>H NMR spectroscopy: 7.26 ppm for D-chloroform, 7.16 ppm for D<sub>6</sub>-benzene). MALDI-TOF-MS was carried out using a Shimadzu Biotech AXIMA Confidence MALDI mass spectrometer in linear (positive) mode. Calibration was conducted against poly(propylene glycol) ( $M_n = 4.0 \text{ kg mol}^{-1}$ ) (**P1a** and **P3a**) or Polymer Factory SpheriCal® MALDI-TOF-MS calibration standards (series of four monodisperse dendrimers in mass range 1716.82-3424.63 Da) (P4). The polymer solution (50  $\mu$ L, 1 mg mL<sup>-1</sup> in THF) was mixed with 50 µL of a 10 mg mL<sup>-1</sup> solution of the matrix (dithranol) in THF. A drop of this solution was spotted onto a MALDI plate which had been pre-spotted with sodium iodide in THF (10 mg mL<sup>-1</sup>). Fourier transform-infrared (FT-IR) spectroscopy was conducted using a Nicolet iS5 (Thermo Scientific) with iD5 attenuated total reflection accessory. Gel permeation chromatography (GPC) was carried out in THF using a Viscotek GPCmax VE2001 solvent/sample module with 2  $\times$  PL gel 10  $\mu$ m MIXED-B + 1  $\times$  PL gel 500A columns, a Viscotek VE3580 RI detector. The system was calibrated with narrow  $D_m$  PS standards with  $M_{\rm n}$  between 0.2-1.8  $\times$  10<sup>3</sup> kg mol<sup>-1</sup> (Polymer Laboratories). The eluent was THF at 40 °C, with a flow rate of 1 mL min<sup>-1</sup>. The analysed samples contained *n*-dodecane as flow marker. UV-Vis absorption spectra and photoluminescence spectra were recorded in chloroform on Varian Cary 5000 UV-Vis-NIR and Cary Eclipse Fluorescence Spectrophotometers. THF was freshly distilled over sodium/benzophenone and deoxygenated by freeze-pump-thaw (minimum of three cycles). 2nd Generation Grubbs Catalyst (G2) was obtained from Sigma-Aldrich and used as received. 3rd Generation Grubbs Catalyst (G3) was prepared by the procedure of Grubbs et al., by the reaction of G2 with an excess of 3bromopyridine.<sup>1</sup> Ethyl vinyl ether was obtained from Sigma-Aldrich and deoxygenated by purging with argon for 2 hours.

2. Synthesis of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1a-d) and *trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P2a-b)



General procedure for synthesis of polymers P1a-d: In an argon filled glovebox cyclophanediene M1 and G3 were added to a vial with a stirrer bar, followed by deoxygenated, anhydrous THF ( $[M1]_I = [0.1]_I$ ). The vial was sealed, removed from the glovebox, wrapped in foil and mixed at room temperature for 10 minutes. The reaction was placed in a preheated oil bath at 40 °C and stirred until complete monomer conversion. The reaction was cooled to room temperature and deoxygenated ethyl vinyl ether was added and stirred at room temperature for 2 hours. The reaction was precipitated into a short methanol/Celite column, washed with methanol and the polymer extracted with chloroform. After evaporation of the solvent polymers **P1a-d** were isolated as green films.

General procedure for photoisomerisation of polymers P1a-b: Polymers P1a-b (P1a; 21 mg and P1b; 18 mg) were dissolved in deoxygenated THF (P1a; 14 mL and P1b; 14 mL) in an argon filled glovebox. The vial was sealed, removed from the glovebox and irradiated with  $\lambda = 365$  nm for 24 hours. After evaporation of the solvent polymers P2a-b were isolated as green films (P2a; 19 mg, 91% and P2b; 15 mg, 83%).

Quantities of reagents used:

| Polymer | [M1]/[G3] | M1                 | G3                  | THF     | Reaction Time | Yield         |
|---------|-----------|--------------------|---------------------|---------|---------------|---------------|
| P1a     | 10        | 32 mg,<br>75 μmol  | 6.6 mg,<br>7.5 μmol | 0.75 mL | 1.5 hours     | 27 mg,<br>82% |
| P1b     | 20        | 46 mg,<br>107 μmol | 4.8 mg,<br>5.4 μmol | 1.10 mL | 2 hours       | 42 mg,<br>89% |
| P1c     | 30        | 49 mg,<br>114 μmol | 3.4 mg,<br>3.8 μmol | 1.14 mL | 4 hours       | 41 mg,<br>84% |
| P1d     | 40        | 54 mg,<br>126 μmol | 2.8 mg,<br>2.6 μmol | 1.26 mL | 4 hours       | 47 mg,<br>87% |

#### 3. Synthesis of *cis/trans*-vinylene Poly(2,5-dioctyl-*p*-phenylenevinylene)s (P3a-c)



General procedure for the synthesises of polymers P3a-c: In an argon filled glovebox mixture of cyclophanedienes M2 and M3, and G3 were added to a vial with a stirrer bar, followed by deoxygenated anhydrous THF ( $[M2]_I = [0.1]_I$ ). The vial was sealed, removed from the glovebox, wrapped in foil and mixed at room temperature for 10 minutes. The reaction was placed in a preheated oil bath at 40 °C and stirred until complete monomer conversion. After which the reaction was cooled to room temperature and deoxygenated ethyl vinyl ether was added and stirred at room temperature 2 hours. The reaction was precipitated by adding acetone, then poured onto a short Celite column, washed with acetone and the polymers extracted with hot chloroform. After evaporation of the solvent the polymers were isolated as green films.

#### Quantities of reagents used:

| Polymer | [M2]/[G3] | Mixture of M2<br>and M3            | G3                  | THF     | Reaction<br>time | Yield         |
|---------|-----------|------------------------------------|---------------------|---------|------------------|---------------|
| P3a     | 10        | 101 mg<br>(17.2 mg,<br>26.3 μmol   | 2.3 mg,<br>2.6 μmol | 0.26 mL | 4 hours          | 11 mg,<br>63% |
| P3b     | 20        | 211 mg<br>(35.9 mg,<br>54.9 μmol)  | 2.4 mg,<br>2.8 μmol | 0.55 mL | 6 hours          | 21 mg,<br>58% |
| РЗс     | 30        | 212 mg,<br>(36.0 mg,<br>55.2 μmol) | 1.6 mg,<br>1.8 μmol | 0.55 mL | 8 hours          | 28 mg,<br>78% |

4. Synthesis of α-Bromoester Functionalised Monotelechelic Poly(*p*phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P4)



In an argon filled glovebox **M1** (30 mg, 70 µmol) and **G3** (6.2 mg, 7.0 µmol) were added to a vial and dissolved in deoxygenated anhydrous THF ([**M1**] = [0.1], 0.70 mL). The vial was sealed, removed from the glovebox, wrapped in foil and mixed at room temperature for 10 minutes. The solution was placed in a preheated oil bath at 40 °C and stirred for 3 hours. The reaction was cooled to room temperature, transferred back to the glovebox and quenched with 4-[(*E/Z*)-2-methoxyvinyl]phenyl-2-bromoisobutyrate (41.9 mg, 140 µmol). The vial was sealed, removed from the glovebox, wrapped in foil and stirred for an additional 24 hours at 40 °C. The reaction was cooled to room temperature, precipitated into a short methanol/Celite column, washed with methanol and the polymer extracted with hot chloroform. The procedure was repeated once further and after evaporation of the solvent polymer **P4** was isolated as a green film (31 mg, 95%).

5. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1a)



6. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1b)



7. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1c)



8. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1d)



9. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of *trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P2a)



10. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of *trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P2b)



11. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz) of *cis/trans*-vinylene Poly(2,5-dioctyl-*p*-phenylenevinylene)s (P3a)



12. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of *cis/trans*-vinylene Poly(2,5-dioctyl-*p*-phenylenevinylene)s (P3b)



13. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of *cis/trans-*vinylene Poly(2,5-dioctyl-*p*-phenylenevinylene)s (P3c)



14. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) of α-Bromoester Functionalised Monotelechelic Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P4)



15. GPC Trace of α-Bromoester Functionalised Monotelechelic Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P4)





 $D_{\rm m} = 1.31$ 

#### (a) (b) Dodecane THE Monomer THE CHCI3 9 8 0 10 7 6 5 4 3 2 15 20 25 30 δ/ppm Retention time (min) THF (C) (d) THF Monomer Dodecane 3 8 15 20 25 Retention time (min) 6 0 10 30 5 7 4 1 δ/ppm

#### 16. Reactivity of M3 with G3 and G2

Crude <sup>1</sup>H NMR spectra and GPC chromatograms; (a) & (b) attempted ROMP of M3 (indicated with  $\bullet$ ) with G2 and (c) & (d) attempted ROMP of M3 (indicated with  $\bullet$ ) with G3 complex.

17. Measurement of Photoluminescence Quantum Yields of *cis/trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P1a-d), *trans*-vinylene Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P2a-b), *cis/trans*-vinylene Poly(2,5-dioctyl-*p*-phenylenevinylene)s (P3a-c) and α-Bromoester Functionalised Monotelechelic Poly(*p*-phenylenevinylene-2,5-dioctyl-*p*-phenylenevinylene)s (P4)

Photoluminescence quantum yields (PLQYs) were measured in dilute solutions of the polymers (**P1a-d**, **P2a-b**, **P3a-c** and **P4**) in chloroform against quinine sulfate as a reference (in 0.1 M H<sub>2</sub>SO<sub>4</sub> solution (PLQY = 0.52 at 25°C)).<sup>2</sup> Initially absorption spectra of each polymer sample were recorded in chloroform followed by fluorescence spectra, by exciting the polymers at 350 nm or 370 nm for polymers **P2a-b**. This process was repeated for five different concentrations for each sample, with the intensity of the absorption at 350 nm (370

nm for polymers **P2a-b**) kept under 0.1 to minimize the self-quenching and re-absorbance effect. PLQYs were calculated for each sample using Equation 1.

$$Q = Q_R \frac{I}{I_R} \frac{OD_R}{OD} \frac{n^2}{n_R^2}$$
 (Equation 1)

Q = quantum yield, I = integrated intensity, n = refractive index of the solvent, OD = optical density and the subscript R refers to the reference fluorophore (quinine sulfate).

Values for  $OD_R$  and  $I_R$  were obtained by measuring both the optical density at 350 nm (370 nm for polymers **P2a-b**) and the integrated fluorescence (360-685 nm,  $\lambda_{ex} = 350$  nm and 380-685 nm,  $\lambda_{ex} = 370$  nm for polymers **P2a-b**)), with solutions of fluorescein at five different concentrations (optical densities between 0.01 and 0.1). Plotting of the optical density *vs*. the integrated fluorescence of the five solutions resulted in a linear gradient.

### 18. References

- 1. J. A. Love, J. P. Morgan, T. M. Trnka and R. H. Grubbs, *Angew. Chem.-Int. Edit.*, 2002, **41**, 4035-4037.
- 2. W. H. Melhuish, J. Phys. Chem., 1961, 65, 229-235.