Supporting Information

Direct arylation of fluoroarenes toward linear, bent-shaped and branched π -conjugated polymers: Polycondensation and post-polymerization approaches

Shotaro Hayashi,* Yuki Togawa, Yoshihisa Kojima, Toshio Koizumi*

Address, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan. Fax: +81 46 844 5901; Tel: +81 46 841 3810 ext 3592; E-mail: shayashi@nda.ac.jp, tkoizumi@nda.ac.jp.

Synthesis of 2-Bromo-6-octyloxynapthalene

2-bromo-6-napthol (2.23 g, 10 mmol), 1-bromooctane (2.32 g, 12 mmol) and K₂CO₃ (2.07 g, 15 mmol) were dissolved in acetone (50 mL), the mixture was stirred under refluxing and a nitrogen atmosphere for 12 hours. The product was filtered to remove K₂CO₃, and then acidified by diluted hydrochloric acid. After rotary evaporation, the residue was treated with water and extracted with chloroform. The organic layer was collected and dried over anhydrous MgSO₄, and then concentrated. The product was purified by column chromatography on silica gel with a mixture of hexane as eluent. The pure compound was obtained as a white solid. Yield: 93% (3.12 g). ¹H NMR (300 MHz, CDCl₃): δ 7.89 (s, 1H), 7.59 (m, 2H), 7.46 (d, *J* = 5.7 Hz, 1H), 7.14 (d, *J* = 9.0 Hz, 1H), 7.06 (s, 1H), 4.03 (t, *J* = 9.1 Hz, *J* = 12.9 Hz, 2H), 1.85 (m, 2H), 1.5-1.2 (br, 10H), 0.88 (br, 3H). ¹³C NMR (75.45 MHz, CDCl₃): δ 157.44, 133.11, 129.92, 129.62, 129.51, 128.39, 128.31, 120.08, 116.86, 106.54, 68.12, 31.82, 29.36, 29.24, 29.20 26.01, 22.65, 14.08. Anal. Caled. for (C₁₈H₂₃BrO): C, 64.48; H, 6.91. Found: C, 64.45; H, 6.93.

Figure S1. GPC trace of PpTPF8s.

Figure S2. ¹H NMR spectrum of PpTPF8. #: CHCl₃. /: H₂O. \$: TMS.

Figure S3. ¹H NMR spectra of PpTPF8 (red line) and PF8 (blue line). #: CHCl₃.

Figure S4. ¹H NMR spectrum of **PpOFPF8**. #: CHCl₃. /: H₂O. \$: TMS.

Figure S5. ¹H NMR spectrum of PmTPF8. #: CHCl₃. /: H₂O. \$: TMS.

Figure S6. Fluorescence spectra of the polymers (PpTPF8, PpOPF8, PmTPF8) in chloroform.

Figure S7. ¹H NMR spectrum of **RC2**. #: CHCl₃. *!*: H₂O. *\$*: TMS.

Figure S8. ¹H NMR spectra of BRCA2 (top) and BRCB2 (bottom). #: CHCl₃. /: H₂O. \$: TMS.

Figure S9. Fluorescence spectra of RCs in chloroform.

Figure S10. Fluorescence spectra of BRCAs (a) and BRCBs (b) in chloroform. #: CHCl₃. /: H₂O. \$: TMS.

Figure S11. ¹H NMR spectra of BP1 (red line) and BP5 (blue line). #: CHCl₃. /: H₂O. \$: TMS.

Figure S12. ¹H NMR spectrum of BPNap. #: CHCl₃. /: H₂O. \$: TMS.

Figure S13. Fluorescence spectra of BPs in chloroform.

Figure S14. Fluorescence spectra of BP1 and BPNap in chloroform.