Supporting Information

Trityl-based alkoxyamines as potential NMP controllers and spin-labels.

Gérard Audran,^{*a*} Elena G. Bagryanskaya,^{*b,c*} Paul Brémond,^{*a*} Mariya Edeleva,^{*b*} Sylvain R. A. Marque,^{*a,b**} Dmitriy Parkhomenko,^{*b*} Olga Yu. Rogozhnikova,^{*b,c*} Victor M. Tormyshev,^{*b,c*} Evgeny Tretyakov,^{*b*} Dmitry V. Trukhin,^{*b,c*} and Svetlana Zhivetyeva ^{*b*} ^{*a*} Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France. E-mail: <u>sylvain.marque@univ-amu.fr</u>

^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia.

^c Novosibirsk State University, Novosibirsk 630090, Russia

Table of contents:

Table 1SI	2
Figure 1SI	3
Figure 2SI	4
Figure 3SI	6
Figure 4SI. ¹ H-NMR and ¹³ C-NMR spectral data for alkoxyamine 6	7
Figure 5SI. HR MS, ¹ H-, ¹³ C-NMR and FT IR spectral data for alkoxyamine 7	8
Figure 6SI. HR MS(ESI), ESR, and FT IR spectral data for trityl 1	10
Figure 7SI. HR MS(ESI), ESR, and FT IR spectral data for trityl 2	12
Figure 8SI. HR MS(ESI), ESR, and FT IR spectral data for trityl 3	14
Figure 9SI. HR MS(ESI), ESR, and FT IR spectral data for trityl 4	16
Figure 10SI. HR MS(ESI), ESR, and FT IR spectral data for trityl 5	18
Figure 11SI. Livingness of polymer initiated with 1	20

Biradical	<i>Т</i> , К	<i>J</i> , G	Δ <i>J</i> , G	biradical lwpp ^{a,b} , G	free trityl lwpp ^{a,c} , G	free nitroxide lwpp ^{a,c} , G	<i>a</i> _n , G	a _p , G
1•	273	55	30	1.5	0.45 ^d			
	283	61	24	1.2		1.5	15.4 ^e	_
	293	62	25.5	1.2				
	303	63	30	1.2				
	313	67	30	1				
	323	70	30	1				
	333	70	40	0.8				
	343	75	40	0.8				
	353	75	40	0.8				
3•	283	160	130	1	0.45 ^d			
	293	160	130	1		2	13.6	44.9 ^f
	303	170	130	1				
	313	180	150	1				
	323	200	150	1				
	333	220	150	1				

Table 1SI. Simulation parameters of EPR spectra for Figures 2SI and 3SI

^a lwpp – peak-to-peak line width; ^b Lorentzian line shape; ^c Gaussian line shape. ${}^{d}g = 2.00281$. ${}^{e}g = 2.00595$. ${}^{f}g = 2.0058$

Figure 1SI. Kinetics of alkoxyamine homolysis: $\Diamond - 1$ at 398K; $\Box - 2$ at 353K; $\circ - 3$ at 373K; $\Delta - 4$ at 373K, star - 5 at 373K

Figure 2SI. The temperature dependence of the EPR signal from the reaction mixture of *2* (after thermolysis at 373K for 5h): full line – experimental spectrum; dotted line – simulated spectrum

Figure 3SI. The temperature dependence of the EPR signal from the reaction mixture of *3* (after thermolysis at 373K for 5h): full line – experimental spectrum; dotted line – simulated spectrum

Figure S4.1 ¹H-NMR spectral data for alkoxyamine 6

¹³C{¹H} NMR spectra (CDCl₃ δ_C = 77.0 ppm) Bruker AV-400 (100.61 MHz) of **6**

Figure S4.2 ¹³C-NMR spectral data for alkoxyamine 6

Figure 5SI. HR MS, ¹H-,¹³C-NMR and FT IR spectral data for alkoxyamine 7

Figure S5.1 HR MS (ESI) spectrum of alkoxyamine 7: calcd. for $C_{17}H_{33}O_4N$ [M⁺] 315.2404, found 315.2408

Figure S5.2 ¹H-NMR spectral data for alkoxyamine 7

Figure S5.3 ¹³C-NMR spectral data for alkoxyamine 7

Figure S5.4 FT IR (KBr) spectrum of alkoxyamine 7

Figure 6SI. HR MS(ESI), EPR, and FT IR spectral data for trityl 1

Figure S6.1.1 MS(ESI) spectrum of trityl 1: calcd. for C₆₁H₇₀NO₉S₁₂ [M⁻] 1344.1699, found 1344.167

Figure S6.1.2 MS(ESI) spectrum of trityl 1: calcd. $C_{61}H_{71}NO_9S_{12}$ for [M+H⁺] 1345.1777, found 1345.169

Figure S6.2. EPR for 0.5 mM deoxygenated solution in DCM: multiplet, α_H =9.4 µT, linewidth (Gauss) 8.7 µT, *g* = 2.00280

Figure S6.3 FT IR (KBr) spectrum of trityl 1

Figure S7.1.1. HR MS (ESI) spectrum of trityl **2**: calcd. for C₆₁H₇₆NO₁₁S₁₂ [M⁻] 1382.2067, found 1382.210

Figure S7.1.2. HR MS (ESI) spectrum of trityl **2**: calcd. for C₆₁H₇₇NO₁₁S₁₂ [M+H⁺] 1383.2145, found 1383.217

Figure S7.2. EPR for 0.5 mM deoxygenated solution in DCM: multiplet, α_H =9.4 µT, linewidth (Gauss) 8.5 µT, g = 2.00280

Figure S7.3 FT IR (KBr) spectrum of trityl 2

Figure 8SI. HR MS(ESI), EPR, and FT IR spectral data for trityl 3

Figure S8.1.1 HR MS (ESI) spectrum of trityl **3**: calcd. for C₆₅H₈₁NO₁₂PS₁₂ [M⁻] 1482.2145, found 1482.251.

Figure S8.1.2. HR MS (ESI) spectrum of trityl **3**: calcd. for C₆₅H₈₂NO₁₂PS₁₂ [M+H⁺] 1483.2223, found 1483.212.

Figure S8.1.3. HR MS (ESI) spectrum of trityl **3**: calcd. for C₆₅H₈₅N₂O₁₂PS₁₂ [M+NH₄⁺] 1500.2489, found 1500.244; calcd. for C₆₅H₈₁NNaO₁₂PS₁₂ [M+Na⁺] 1505.2043, found 1505.201.

Figure S8.2. EPR for 0.5 mM deoxygenated solution in DCM: multiplet, $\alpha_{\rm H}$ =9.4 µT, linewidth (Gauss) 8.7 µT, *g* = 2.00280

Figure S8.3 FT IR (KBr) spectrum of trityl 3

Figure 9SI. HR MS(ESI), EPR, and FT IR spectral data for trityl 4

Figure S9.1.1. HR MS (ESI) spectrum of trityl **4**: calcd. for C₆₅H₈₃N₂O₁₁PS₁₂ [M+H⁺] 1482.2383, found 1482.229

Figure S9.1.2. HR MS (ESI) spectrum of trityl **4**: calcd. for C₆₅H₈₆N₃O₁₁PS₁₂ [M+NH₄⁺] 1499.2648, found 1499.257; calcd. for C₆₅H₈₂N₂NaO₁₁PS₁₂ [M+Na⁺] 1504.2202, found 1504.218.

Figure S9.2. EPR for 0.5 mM deoxygenated solution of trityl **4** in DCM: multiplet, $\alpha_{\rm H}$ = 10.6 μ T, linewidth (Gauss) 7.3 μ T, *g* = 2.00281

Figure S9.3 FT IR (KBr) spectrum of trityl 4

Figure 10SI. HR MS(ESI), EPR, and FT IR spectral data for trityl 5

Figure S10.1.1. HR MS (ESI) spectrum of trityl **5**: calcd. for C₆₄H₈₁N₂O₁₂PS₁₂ [M+H⁺] 1484.2176, found 1484.210; calcd. for C₆₄H₈₀N₂NaO₁₂PS₁₂ [M+Na⁺] 1506.1995, found 1506.189.

Figure S10.2. EPR for 0.5 mM deoxygenated solution of **5** in DCM: multiplet (splitting on 8 protons in groups of 3H, 3H, 2H), α_{H1} = 9.0 μ T, α_{H2} = 9.5 μ T, α_{H3} = 9.8 μ T (respectively), linewidth (Gauss) 8.6 μ T, *g* = 2.00281

Figure S10.3 FT IR (KBr) spectrum of trityl 5

Figure 11SI. Livingness of polymer initiated with 1