Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

New Catalysts for the Synthesis of Highly Reactive Polyisobutylene: Chloroaluminate Imidazole-Based Ionic Liquid in the Presence of Diisopropyl Ethers

Irina V. Vasilenko, Ivan A. Berezianko, Dmitriy I. Shiman, Sergei V. Kostjuk*

Research Institute for Physical Chemical Problems of the Belarusian State University, 14

Leningradskaya st., 220006 Minsk, Belarus. E-mail: kostjuks@bsu.by, kostjuks@rambler.ru

Content

	Page
Experimental Section	S2
Table S1	S3
Figure S1	S3
Figure S2	S3
Table S2	S4
Table S3	S4
Table S4	S4
Figure S3	S5

Experimental Section

Materials. Isobutylene (Aldrich, 99%) was dried in the gaseous state by passing through the column packed with CaCl₂. *n*-Hexane (Sigma–Aldrich, >95%) were treated with sulphuric acid, washed with aqueous sodium bicarbonate, dried over CaCl₂ and distilled twice from CaH₂ under an inert atmosphere. Diisopropyl ether ('Pr₂O, Fluka, \geq 98.5%), *tert*-butyl methyl ether ('BuOMe, Sigma–Aldrich, 99.8%) were distilled over CaH₂ under argon while dibutyl ether (Bu₂O, Sigma–Aldrich, 99.3%) was distilled over CaH₂ at reduced pressure. 1-Ethyl-3-methylimidazolium chloride ([emim]Cl, Aldrich, \geq 95%) was dried in vacuum during 5 h before use. [emim]Cl-AlCl₃ (χ (AlCl₃)=0.6) was synthesized from 1-ethyl-3-methylimidazolium chloride and AlCl₃ by simple mixing of the components under argon atmosphere according to a procedure described in the literature.¹ AlCl₃ (Aldrich, 99.99%), Et₃Al (1 M solution in hexanes, Aldrich), CDCl₃ (Euriso-top®), ethanol (Sigma–Aldrich, >96%), tetrahydrofuran (anhydrous, Sigma-Aldrich, \geq 99.9%) were used as received. The synthesis of AlCl₃×OBu₂ and EtAlCl₂ was performed according to the literature.^{2,3}

Instrumentation. Size exclusion chromatography (SEC) was performed on a Agilent 1200 apparatus with Nucleogel GPC LM-5, 300/7,7 column and one precolumn (PL gel 5 µm guard) thermostated at 30 °C. The detection was achieved by differential refractometer. Tetrahydrofuran (THF) was eluted at a flow rate of 1.0 mL/min. The calculation of molar mass and polydispersity was based on polystyrene standards (Polymer Labs, Germany). ¹H NMR (500 MHz) spectra were recorded in CDCl₃ at 25 °C on a Bruker AC-500 spectrometer calibrated relative to the residual solvent resonance. The ultrasonication of ionic liquid/*n*-hexane mixture was performed during 3 min at room temperature using Elmasonic S30H ultrasonic batch (ultrasonic power: 80 W; ultrasound frequency: 37 kHz).

Polymerization procedures.

The polymerization reactions were carried out in glass tubes equipped with a cold finger condenser under argon atmosphere at temperatures from -40 °C to 10 °C. As an example of a typical procedure, polymerization was initiated by adding of isobutylene (2.86 g, 5.1×10^{-2} mol)) to a mixture of a total volume 9.8 mL consisting of solutions of diisopropyl ether (0.11 mL, 1 M), [emim]Cl-AlCl₃ (0.056 mL) and *n*-hexane (4.9 mL). After a predetermined time, ca. 2 mL of aqueous ammonia (25%) was poured into the glass reactor to terminate the polymerization. The quenched reaction mixtures were diluted by *n*-hexane and filtered, evaporated to dryness under reduced pressure, and dried in vacuum (≤ 60 °C) to give the product polymers. Monomer conversions were determined gravimetrically.

^{1 (}a) Wilkes, J. S.; Levisky, L. A.; Wilson, R. A.; Hussey, C. L. *Inorg.Chem.* **1982**, *21*, 1263. (b) Ambler, P.W.; Hodgson, P.K.G.; Stewart N.J. (BP Chem. Ltd) EP 0558187, **1993**

² Vasilenko, I. V.; Frolov, A. N.; Kostjuk, S. V. Macromolecules 2010, 43, 5503.

³ Vasilenko, I. V.; Shiman. D. I.; Kostjuk, S. V. Polym. Chem. 2014, 5, 3855

Table S1. Polymerization of Isobutylene in *n*-Hexane Catalyzed by [emim]Cl-AlCl₃ (χ (AlCl₃)=0.6) at Different Temperatures^a

run time (min)	time	temperature (°C)	conv. (%)	M _n (g/mol)	M_w/M_n	end groups distribution (%)			
						exo	tri+endo	tetra	PIBC1
1	30	0	100	1500	6.8 ^b	2	74	24	0
2	30	-20	100	7000	3.8 ^b	2	71	27	0
3°	30	-20	100	6000	5.9 ^b	0	75	25	0
4	5	-40	46	25000	6.3 ^b	0	75	25	0
5 ^d	5	-40	42	-	-	4	72	24	0
6	30	-40	99	7600	6.7 ^b	1	79	20	0

^a [emim]Cl-AlCl₃=22 mM; [IB] = 5.2 M. ^b Bimodal or multimodal MWD. ^c Reproducibility check ^d

Figure S1. Typical SEC curves of polyisobutylenes synthesized during isobutylene polymerization with [emim]Cl-AlCl₃ as catalyst at different temperatures: [emim]Cl-AlCl₃=22 mM; [IB] = 5.2 M. Temperature: (**a**) -20 °C (run 3, Table S1) and (**b**) 0 °C (run 1, Table S1).

Figure S2. Fragment of ¹H NMR spectrum of polyisobutylene (run 1 in Table S1) synthesized during isobutylene polymerization with [emim]Cl-AlCl₃ as catalyst at 0 °C: [emim]Cl-AlCl₃=22 mM; [IB] = 5.2 M.

Table S2. Polymerization of IB in Hexane at 0°C for 30 min Catalyzed by [emim]Cl-AlCl₃ $(\chi(AlCl_3)=0.6)$ in the Presence of Diisopropyl Ether at the Different Monomer Concentrations ^a

run	[IB] (M)	conv (%)	M _n	M _w /M _n	M _{n,NMR} ^b (g/mol)	end groups distribution (%)				
			(g/mol)			exo	tri+endo	tetra	PIBCl	
1	1.3	25	2500	2.2	1760	46	40	11	3	
2	2.6	40	3170	1.7	2200	87	6	5	2	
3	5.2	51	3940	2.0	3340	92	4	3	1	
4	7.8	24	7250	2.2	5340	91	4	4	1	

^a [emim]Cl-AlCl₃=22 mM; [ⁱPr₂O] = 11 mM.; ^b $M_n(NMR)=56.11\times[(i/2)/((b+b')/2)+d+e+g+k/6]$, see Figure 1a.

Table S3. Polymerization of Isobutylene in *n*-Hexane at 0° C for 30 min Catalyzed by [emim]Cl-AlCl₃ (χ (AlCl₃)=0.6) in the Presence of Diisopropyl Ether at Different IL concentrations ^a

run	IL (mM)	[ⁱ Pr ₂ O]/ [IL]	conv	M_n	M _w /M _n	$M_{n,NMR}^{b}$	end groups distribution (%)					
			(/0)	(g/1101)		(g/1101)	exo	tri+endo	tetra	PIBC1		
1	11	1.00	28	4900	1.9	3520	95	2	1	2		
2	22	0.50	51	3940	2.0	3340	92	4	3	1		
3	33	0.35	62	6500	1.9	4510	89	4	4	3		
4	44	0.25	74	4700	5.8	3170	49	24	26	1		
a	IB] =	5.2 N	M. b	Calculate	ed base	d on	the	end g	oups	content		

^a [IB] = 5.2 M. ^b Calculated based on the end groups content $M_n(NMR)=56.11\times[(i/2)/((b+b')/2)+d+e+g+k/6]$, see Figure 1a.

as

Table S4. Polymerization of IB in *n*-Hexane at 0°C for 30 min Catalyzed by [emim][AlCl₄] $(\chi(AlCl_3)=0.6)$ in the Presence of Diisopropyl Ether and Different Initiators (H₂O, 'BuCl, PhEtCl)^a

run	initiator (mM)	conv (%)	M _n (g/mol)	M_w/M_n	M _{n,NMR} ^b (g/mol)	End groups distribution (%)			
						exo	tri+endo	tetra	PIBCl
1	$H_2O(67 \text{ mM})$	7	-	-	3400	95	1	1	3
2	^t BuCl (2.2mM)	47	6400	1.8	5300	0	80	20	0
3°	^t BuCl (2.2mM)	76	2900	2.2	1800	28	54	17	1
4 ^d	PhEtCl (1.1 mM)	93	5400	2.7	2800	24	51	22	3
5 ^{d,e}	PhEtCl (1.1 mM)	49	4200	2.3	3900	51	29	17	3

^a [emim]Cl-AlCl₃=22 mM; [ⁱPr₂O] = 11 mM. [IB]=5.2 M; PhEtCl: 1-chloro-1-phenylethane. Te sequence of components addition: *n*-hexane, [emim]Cl-AlCl₃, ⁱPr₂O, then monomer and initiator were injected simultaneously. ^b Calculated based on the end groups content as $M_n(NMR)=56.11\times[(i/2)/((b+b')/2)+d+e+g+k/6]$, see Figure 1a. ^c Ionic liquid was injected as the last component. ^d [emim]Cl-AlCl₃, $\chi(AlCl_3)=0.67$; ^e[ⁱPr₂O] = 17 mM.

Figure S3. Fragment of ¹H NMR spectrum of polyisobutylene (run 4 in Table S4) synthesized during isobutylene polymerization with PhEtCl/[emim]Cl-AlCl₃ initiating system at 0 °C. ¹³C satellites and traces of CH_2Cl_2 labeled by asterisks.