Electronic Supporting Information

Sustainable coatings from bio-based, enzymatically synthesized polyesters with enhanced functionalities

Liliana Gustini ^{a,b}, Cristina Lavilla ^{a,*}, Lasse Finzel ^a, Bart A.J. Noordover ^a, Marco M.R.M.

Hendrix ^a, Cor E. Koning ^{a,c}

^a Laboratory of Polymer Materials, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

^b Dutch Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands

° DSM Coating Resins, Ceintuurbaan 5, Zwolle, The Netherlands

*corresponding author: Cristina Lavilla, C.LavillaAguilar@tue.nl

Potentiometric titration. For the AV determination, in a round flask approximately 0.5 g of the sample were precisely weighed and dissolved in ca. 30 mL tetrahydrofuran (THF) and ca. 7 mL methanol. The titration was performed with a 0.1 M KOH-solution in methanol with a Metrohm Titrino plus 848 fitted with a silver titrode.

The AV is defined as the number of milligrams of potassium hydroxide (KOH) required to neutralize 1 g of polymer resin.

$$AV = \frac{V_s * N * 56.1}{W_s}$$

In this equation AV = acid value (mg KOH/g), V_s = volume of methanolic KOH solution needed to titrate the sample (mL), N = normality of KOH solution (mol/L), 56.1 = molar mass of KOH (g/mol) and W_s = sample weight (g).

OHV determination was performed by dissolving approximately 0.5 g of the sample in ca. 30 mL tetrahydrofuran (THF). To this solution, 15 mL of 4-(dimethylamino)pyridine solution (10 g in 1 L THF) and exactly 5 mL of ca. 1.05 M acetic anhydride in THF were added and the mixture was stirred for 50 min. The reaction solution was then hydrolyzed with 10 mL of a solution containing 20 vol% water and 80 vol% THF.

For the titration, a Metrohm Titrino Plus 848 fitted with a silver titrode and a 0.5 M KOH-solution in methanol was used.

$$OHV = AV + \frac{(V_b - V_s) * N * 56.1}{W_s}$$

In this equation OHV = hydroxyl value (mg KOH/g), AV = acid value (mg KOH/g), V_b = volume of methanolic KOH solution needed to titrate the blank (mL), V_s = volume of methanolic KOH solution needed to titrate the sample (mL), N = normality of KOH solution (mol/L), 56.1 = molar mass of KOH (g/mol) and W_s = sample weight (g).

Enzymatic activity assay. The enzymatic activities of the immobilized Novozyme® 435 and SPRIN liposorb CALB were evaluated by the model esterification of lauric acid with 1-propanol in bulk (Figure S1)ⁱ. One unit of enzyme activity corresponds to the amount of enzyme preparation required to produce 1 micromole of propyl laurate per minute under standard conditions (60 °C).

Figure S1 Esterification of lauric acid with 1-propanol in bulk.

In a 200 mL beaker, 24.0 g (0.12 mol) of lauric acid and 7.2 g (0.12 mol) of 1-propanol were mixed and melted at 60 °C. After taking the reference sample (blank), 200-300 mg of the enzyme was added to the mixture. The reaction solution was stirred at 60 °C for 20 min. A sample of the reaction mixture (100-180 mg) was taken every 5 min and dissolved in 7 mL of ethanol. To this solution, five drops of 0.1 w% phenolphthalein water/ethanol solution, used as indicator, were added. The decrease of the amount of lauric acid due to its enzymatic esterification was monitored via titration of the unreacted lauric acid with a 0.1 M ethanolic potassium hydroxide solution.

The activity U is calculated as the amount of micromoles propyl laurate formed in one minute by one gram of the enzyme, which was previously dried at 120 °C under reduced pressure for 24 h.

$$U = \frac{n_{lauric \ acid}}{m_{dry} \cdot t} \cdot \frac{AV_0 - AV_{sample}}{AV_0}$$

In this equation, $n_{\text{lauric acid}}$ is the amount in moles of lauric acid used, *t* the reaction time for a certain sample, AV₀ the acid value of the blank and AV_{sample} the acid value of the sample (mg KOH/g). The conversion of lauric acid was followed by AV measurements.

The activities showed to be 10700 and 16300 U (µmol·g⁻¹·mol⁻¹) for Novozyme[®] 435 and SPRIN liposorb CALB, respectively. Thus, in order to achieve comparable activity for the polycondensation reactions, 10 wt% of Novozyme[®] 435 or 7 wt% of SPRIN liposorb CALB were employed.

Table S1. Molecular characterization of sorbitol-based polyesters with enhanced functionalities obtained by enzymatic polycondensation.

Entry	Monomers	Sorbitol	Sorbitol	Potentiom	³¹ P NMR		
		feed composition (mol%)	incorporated (mol%)	AV (mg KOH/g)ª	OHV (mg KOH/g)ª	Ratio Sec. <i>vs</i> . Prim. OH of sorbitol unit⁵	
а	AA + sorbitol + 1,8-OD	5.0	2.5	11.4	80.3	11.1	
b	DMA +	5.3	1.4	0.0	51.5	6.7	
с	sorbitol +1,10-DD	10.5	3.2	0.0	72.5	9.7	
d		15.8	3.1	0.0	83.8	9.7	

AA = adipic acid; DMA = dimethyl adipate; 1,8-OD = 1,8-octanediol; 1,10-DD = 1,10-decanediol; ^a: Data obtained by potentiometric titration performed after precipitation in MeOH. ^b: Ratio of secondary vs. primary hydroxyl groups of the sorbitol unit obtained by ³¹P NMR after precipitation in MeOH.

Resin	OHV (mg KOH/g)	OHV Film mg KOH/g)		Renewability (wt%)	ewability Ratio wt%) NCO:OH		Impact test ^a (1 kg,80 cm)	Av. Film thickness (µm)	Pencil hardness ^b
		F21	DES	48	1:1	+	+	25	3B
		F22	DES	56	0.8:1	+	+	22	3B
C DMA + sorbitol + 1,10-DD		F23	DES	68	0.5:1	+/-	+	21	6B
	72.5	F24	IPDI	68	1:1	+	+	16	4B
		F25	IPDI	56	0.8:1	+/-	+	23	5B
		F26	DDI	98	1:1	+/-	+	26	5B
		F27	EELDI	97	1:1	+/-	+	19	5B

Table S2. Solvent-cast coating formulations and related coating properties of poly(ester urethane)s based on sorbitol and 1,10decanediol.

DES: Desmodur N3600; IPDI: isophorone diisocyanate; DDI: dimer fatty acid diisocyanate; EELDI: ethyl ester L-lysine diisocyanate. a: : + = good, +/- = moderate and - = poor. b:6H to 2H= very hard to hard; H, F and B = moderate hard; 2B to 6B= soft to very soft.

Table S3. Molecular and thermal properties of the homopolyesters, *viz.* poly(octane adipate) and poly(decane adipate), synthesized *via* enzymatic polycondensation.

Resin	Mnª (kg/mol)	PDIª	OHV⁵ (mg KOH/g)	7 _m c (°C)	∆ <i>H</i> _m ∝ (J/g)	7 _c d (°C)
Poly(octane adipate)	8.7	2.1	19.0	68	98	50
Poly(decane adipate)	6.3	1.7	30.7	74	115	55

a: Based on SEC measurements of the precipitated polyesters, performed in HFIP and using poly(methyl methacrylate) as standard;
b Data obtained by potentiometric titration performed after precipitation in MeOH.
c:Data obtained *via* DSC from the second heating run;
d:Data obtained *via* DSC from the cooling run.

Table S4. Thermal properties and crystallinity of the starting sorbitol-based polyester polyols and the related poly(ester urethane)s after curing.

	OHV (mg KOH/g)	Before curing				After curing								
Resin		7gª (°C)	7 _m ª (°C)	∆ <i>H</i> _m ª (J/g)	7c⁵ (°C)	X ^c (%)	Film	Curing agent	Ratio OH:NCO	7 _m ª (°C)	Δ <i>H</i> _m a (J/g)	<i>Т</i> с ^ь (°С)	X ^c (%)	Мах <i>X</i> ª (%)
							FS12	DES	1:1	59	70	25	36	47
							FS13	DES	1:0.8	59	71	25	42	49
С	70 5	00	07	400	50	50	FS14	DES	1:0.5	46/65	15	16/43	51	52
DMA + sorbitol +	72.5	-20	67	100	52	58	FS15	IPDI	1:0.8	63	58	26	55	52
1,10-DD							FS16	DDI	1:1	51	31	15	31	39
							FS17	EELDI	1:1	54	46	15	39	51

DES: Desmodur N3600; IPDI: isophorone diisocyanate; DDI: dimer fatty acid diisocyanate; EELDI: ethyl ester L-lysine diisocyanate. a: Data obtained *via* DSC obtained from the second heating run. ^b:Data obtained *via* DSC from the cooling run. ^c: Crystallinity index from X-ray diffraction data is calculated using PeakFit. ^d: Maximum crystallinity calculated as: (Mass polyester**X*_{polyester before curing}) / (Mass polyester + Mass cross-linker).

Cross-link density calculation based on DMTA measurements. The value of T_g extrapolated *via* DMA measurements is based on the response of a material to an applied oscillatory strain (or stress), and how that response varies with temperature, frequency, or both. The cross-link density was calculated according to the theory of rubber elasticity where the equilibrium elastic modulus is given by

$$v_e = \frac{G'}{RT} = \frac{E'}{3RT}$$

In this equation v_e is the cross-link density expressed in mole of elastically effective network chains per cubic meter of sample, *G*' is the shear storage modulus, *E*' is the elastic storage modulus, *R* is the universal gas constant (8.314 J K⁻¹ mol⁻¹) and *T* is the absolute temperature at which the experimental modulus is performed. Assuming that the samples do not undergo volume change with tensile strain, *G*' can be considered equal to E'(2(1+v)) where *v* is the Poisson coefficient with a value of 0.5.

ⁱ Ferrario, V.; Veny, H.; De Angelis, E.; Navarini, L.; Ebert, C.; Gardossi, L. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils *Biomolecules* **2013**, *3*(3), 514-534.