Supporting Information

Thiolactone-Maleimide: A Functional Monomer to Synthesize Fluorescent Aliphatic Poly(amide-imide) with Excellent Solubility via In Situ PEGylation

Jun-Jie Yan,^{*,†} Rong-Rong Wang,[†] Dong-Hui Pan,[†] Run-Lin Yang,[†] Yu-Ping Xu,[†] Li-Zhen Wang,[†] Min Yang^{*,†}

[†]Molecular Imaging Center, Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China

Figure S1. Gel formation during the reaction between thiolactone-maleimide (without a linker) and 1,3-diaminopropane in DMSO.

Scheme S1. Synthesis of Thiolactone-Maleimide Functional Monomer.

Figure S2. ¹H and ¹³C NMR spectra of bromo-functionalized thiolactones in CDCl₃.

Figure S3. ¹H and ¹³C NMR spectra of azide-functionalized thiolactones in CDCl₃.

Figure S4. ¹H and ¹³C NMR spectra of *N*-propargylmaleimide in CDCl₃.

Figure S5. ¹H and ¹³C NMR spectra of thiolactone-momaleimide monomer in DMSO- d_6 .

Polymerization of thiolactone-maleimide and monoamine. Thiolactone-maleimide functional monomer (36.3 mg, 0.1 mmol) was dissolved in 1.0 mL DMSO and the solution was purged with argon for 10 min. Then, n-butylamine (7.3 mg, 0.1 mmol) was added, and the mixture immediately turned from slight yellow to deep red. The reaction was monitored by ¹H and ¹³C NMR spectroscopy.

Figure S6. ¹H and ¹³C NMR spectra of reaction between thiolactone-momaleimide monomer and *n*-butylamine.

As shown in Figure S6, *n*-butylamine selectively and quantitatively reacted with maleimide unit and obtained complete conversion within 5 min, while no ring-opening reaction of thiolactone unit was detected. Also, no additional new carbon signals were observed in ¹³C NMR spectrum except the carbons of the product, precluding the possible by-product from the Michael addition between the formed secondary amine and the maleimide unit.

Polymerization of thiolactone-maleimide and diamine. Thiolactone-maleimide functional monomer (36.3 mg, 0.1 mmol) was dissolved in 1.0 mL DMSO and the solution was purged with argon for 10 min. Then, 1,3-diaminopropane (7.4 mg, 0.1 mmol) was added, and the mixture gradually turned from yellow to orange red. The mixture was stirred at room temperature and the reaction was monitored by ¹H NMR and ¹³C NMR. After the polymerization, the product was purified by precipitating to acetone twice, and the product was vacuum dried at 35°C for 3 h. Yield: 94.2%.

Figure S7. Optical change of PAI1 during synthesis.

Figure S8. Enlarged ¹³C NMR spectra between 24 and 50 ppm (complete spectra, see Figure 1B) for the polymerization of thiolactone-maleimide and 1,3-diaminopropane.

Figure S9. ¹H, ¹³C NMR spectra and GPC curve of PAI2.

Figure S10. ¹H, ¹³C NMR spectra and GPC curve of PAI3.

Figure S11. ¹H, ¹³C NMR spectra and GPC curve of PAI4.

Figure S12. UV-vis (a) and fluorescence spectra (b) of PEGylated PAI1 in different solvents.