SUPPORTING INFORMATION

Poly(triphenyl ethene) and poly(tetraphenyl ethene): Synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection⁺

Hui Zhou,^a Xiaobai Wang,^a Ting Ting Lin,^a Jing Song,^a Ben Zhong Tang^{*b} and Jianwei Xu^{*ac}

 ^aInstitute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.
 ^bDepartment of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
 ^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

* Corresponding author: Jianwei Xu
Email address: jw-xu@imre.a-star.edu.sg
Mailing address: 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
Tel: 65-6872-7543
Fax: 65-6872-7528

Table content

Fig. S1 (a) GPC spectrum of polymers **PTriPE** and **PTPE** in THF. (b) TGA thermograms of polymers **PTriPE** and **PTPE** under nitrogen at a heating rate of 20 °C·min⁻¹. (c) DSC thermograms of polymers **PTriPE** and **PTPE** under nitrogen at a heating rate of 20 °C·min⁻¹. (4)

Fig. S2 UV-Vis (a) and fluorescence spectra (b) of **TPE**, **DPDB**, **PTriPE** and **PTPE** in THF, THF/H₂O (1:9 v/v) mixture. (4)

Fig. S3 (a) Fluorescence spectra of polymer **PTPE** in THF/H₂O mixtures with different H₂O contents (λ_{ex} = 334 nm, [**PTPE**] = 100.0 µg·mL⁻¹). (b) The photographs of **PTPE** solutions taken under UV illumination (λ_{ex} = 365 nm)). (c) Fluorescence intensity maximum of **TPE**, **DPDB**, **PTriPE** and **PTPE** with the same weight percentage in THF/H₂O mixtures ([C] = 100.0 µg·mL⁻¹).

(5)

Fig. S4 Concentration-dependent fluorescence quenching of **PTPE** by nitro compounds. [**PTPE**] = 100.0 μ g·mL⁻¹ in THF/H₂O (1:9 v/v) mixture (6)

Table S1 Processing parameters for drop coating (F1) and spin coating preparation (F2), andelectrohydrodynamic preparation (F3-F4).(6)

Fig. S5 N_2 absorption isotherms at -196 °C for PTriPE porous film by electrospun and PTriPE dense film by drop coating. (6)

Fig. 6 Optimized molecular structures and molecular orbital amplitude plots of HOMO and LUMO energy levels of the **PTriPE** calculated using the B3LYP/6-31G(d,p) basis set. (7)

Table S2. DFT (G09 [reference 1]: B3LYP/6-31G(d,p)) calculated energy level of PTPE-A oligomers.(7)**Fig. S7** Optimized molecular structures and molecular orbital amplitude plots of HOMO and LUMOenergy levels of the **PTPE** calculated using the B3LYP/6-31G(d,p) basis set.(8)

Table S3. DFT (G09 [reference 1]: B3LYP/6-31G(d,p)) calculated energy level of PTPE oligomers.(8)

Fig. S8 The demonstration for nitro compound vapors detection. (a) The bright image of filter paper contaminated by nitro compound (left). The right one is the substrate fabricated by spray coating polymer nanoparticles of **PTriPE** in THF/H₂O (1:9 v/v) mixture onto filter paper, amounting to approximately concentration as $1.0 \,\mu\text{g/cm}^2$. (b) The demonstration for DNT vapor detection. (9) **Fig. S9** The fluorescence quenching of substrate on exposure to DNT saturated vapor for different time: (a) 0 min, (b) 5 min, (c) 10 min, (d) 20 min, (e) 30 min. The images of substrate are under UV light illumination (365 nm). (9)

Fig. S10 The fluorescence quenching of substrate on exposure to nitro compounds vapor, the fluorescent images of substrates are check by neck eyes after 30 min. (a) The image of substrate under UV light illumination (365 nm) without nitro compound. Figure b, c, d and e are the images of substrate under UV light illumination (365 nm) after contacting for PA, TNT, DNT and NT, respectively. (9)

Fig. S11 The normalized UV-vis absorption of PA and TNT, and normalized fluorescence of PTriPE and PTPE in THF/H₂O (1:9 v/v). (10)

Fig. S12 ¹ H NMR spectrum of DPDB in CDCl ₃ .	(10)
Fig. S13. ^{13C} NMR spectrum of DPDB in CDCl ₃ .	(11)
Fig. S14 MALDI-TOF of DPDB.	(11)
Fig. S15 FTIR of DPDB in KBr.	(12)
Fig. S16 ¹ H NMR spectrum of PTriPE in CDCl ₃ .	(12)
Fig. S17 ¹³ C NMR spectrum of PTriPE in CDCl ₃ .	(13)
Fig. S18 FTIR of PTriPE in KBr.	(13)
Fig. S19 ¹ H NMR spectrum of PTPE in CDCl ₃ .	(14)
Fig. S20 ¹³ C NMR spectrum of PTPE in CDCl3.	(14)
Fig. S21 FTIR of PTPE in KBr.	(14)

Fig. S1 (a) GPC spectrum of polymers **PTriPE** and **PTPE** in THF. (b) TGA thermograms of polymers **PTriPE** and **PTPE** under nitrogen at a heating rate of 20 °C·min⁻¹. (c) DSC thermograms of polymers **PTriPE** and **PTPE** under nitrogen at a heating rate of 20 °C·min⁻¹.

Fig. S2 UV-Vis (a) and fluorescence spectra (b) of **TPE**, **DPDB**, **PTriPE** and **PTPE** in THF, THF/H₂O (1:9 v/v) mixture.

Fig. S3 (a) Fluorescence spectra of polymer **PTPE** in THF/H₂O mixtures with different H₂O contents (λ_{ex} = 334 nm, [**PTPE**] = 100.0 µg·mL⁻¹). (b) The photographs of **PTPE** solutions taken under UV illumination (λ_{ex} = 365 nm)). (c) Fluorescence intensity maximum of **TPE**, **DPDB**, **PTriPE** and **PTPE** with the same weight percentage in THF/H₂O mixtures ([C] = 100.0 µg·mL⁻¹).

Fig. S4 Concentration-dependent fluorescence quenching of **PTPE** by nitro compounds. [**PTPE**] = 100.0 μ g·mL⁻¹ in THF/H₂O (1:9 v/v) mixture.

Table S1. Processing parameters for drop coating (F1) and spin coating preparation (F2), and electrohydrodynamic preparation (F3-F4).

Unit	Concentration (wt%)	Voltage (kV)	Flow rate (mL/h)	Distance (cm)	Time (h)
F1 (PTriPE)	2.0	Drop coating			
F2 (PTriPE)	2.0	Spin coating			
F3 (PTriPE)	2.0	9.7	4.0	10.0	1.0
F4 (PTPE)	2.0	9.7	4.0	10.0	1.0

^a Experiments were performed in duplicate and mean values were taken.

Fig. S5 N_2 absorption isotherms at -196 °C for **PTriPE** porous film by electrospun and **PTriPE** dense film by drop coating.

Fig. S6 Optimized molecular structures and molecular orbital amplitude plots of HOMO and LUMO energy levels of the **PTriPE** calculated using the B3LYP/6-31G(d,p) basis set.

Unit	HOMO (eV)	LUMO	E _g (eV)
		(eV)	
Monomer	-5.328	-1.218	4.111
Dimer	-5.109	-1.437	3.672
Trimer	-5.043	-1.484	3.559
Tetramer	-4.987	-1.543	3.444
Pentamer	-4.969	-1.545	3.424
Hexamer	-4.940	-1.576	3.365

 Table S2. DFT (G09 [reference 1]: B3LYP/6-31G(d,p)) calculated energy level of

 PTriPE oligomers.

Fig. S7 Optimized molecular structures and molecular orbital amplitude plots of HOMO and LUMO energy levels of the **PTPE** calculated using the B3LYP/6-31G(d,p) basis set.

Table S3. DFT (G09 [reference 1]: B3LYP/6-31G(d,p)) calculated energy level of **PTPE** oligomers.

Unit	HOMO (eV)	LUMO	$E(\alpha)$	
		(eV)	Eg (ev)	
Monomer	-5.223	-1.412	3.811	
Dimer	-5.144	-1.448	3.696	
Trimer	-5.083	-1.513	3.570	
Tetramer	-5.060	-1.527	3.533	
Hexamer	-5.039	-1.551	3.487	

Fig. S8 The demonstration for nitro compound vapors detection. (a) The bright image of filter paper contaminated by nitro compound (left). The right one is the substrate fabricated by spray coating polymer nanoparticles of **PTriPE** in THF/H₂O (1:9 v/v) mixture onto filter paper, amounting to approximately concentration as 1.0 μ g/cm². (b) The demonstration for DNT vapor detection.

Fig. S9 The fluorescence quenching of substrate on exposure to DNT saturated vapor for different time: (a) 0 min, (b) 5 min, (c) 10 min, (d) 20 min, (e) 30 min. The images of substrate are under UV light illumination (365 nm).

Fig. S10 The fluorescence quenching of substrate on exposure to nitro compounds vapor, the fluorescent images of substrates are check by neck eyes after 30 min. (a) The image of substrate under UV light illumination (365 nm) without nitro compound. Figure b, c, d and e are the images of substrate under UV light illumination (365 nm) after contacting for PA, TNT, DNT and NT, respectively.

Fig. S11 The normalized UV-vis absorption of PA and TNT, and normalized fluorescence of PTriPE and PTPE in THF/H₂O (1:9 v/v).

140 130 PPM 170 Fig. S13 ¹³C NMR spectrum of DPDB in CDCl₃.

Fig. S14 MALDI-TOF of DPDB.

Fig. S18 FTIR of PTriPE in KBr.

PPM

Fig. S21 FTIR of PTPE in KBr.