Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI) for Polymer-Inorganic Hybrid Nanoparticles of Various Morphologies via Polymerization-Induced Self Assembly and Sol-Gel Chemistry

Guo Hui Teo, Rhiannon P. Kuchel, Per B. Zetterlund, and Stuart C. Thickett*

Figure S1. ¹H NMR spectrum (in CDCl₃) of IPS.

Figure S2. ²⁹Si NMR Spectra of IPS in CDCl₃.

Figure S3. ¹H NMR of macroRAFT agent D-MPS₄₀ (Entry 2, Table 1 main text).

Entry	Sample	Conversion	DP _{th}	DP	Si, S	Si:S ratio	DP
	Code			(¹ H NMR)	content		(XPS)
					(at. %)		
Dithiobenzoate (CPADB) mediated macroRAFT synthesis							
1	D-MPS ₄₀	0.98	39	41	7.25, 0.22	33	66
2	D-MPS ₆₅	0.97	63	66	6.71, 0.15	45	90
3	D-IPS ₄₀	0.97	39	48	6.85, 0.28	24.5	49
4	D-IPS ₆₅	0.97	63	72	9.53, 0.25	38	76

Table S1. XPS Analysis of macroRAFT agents.

The Si:S ratio was used to estimate the DP of our polymer chains, given that there is one Si atom per monomer repeat unit, and two S atoms per endgroup. This estimation is reliant on no loss of RAFT end-groups during synthesis or storage.

Figure S4. Solution-based ²⁹Si NMR Spectra of D-MPS₄₀ (CDCl₃ +TMS as internal reference)

Figure S6. Thermogravimetric analysis of MPS and IPS macroRAFT agents (red and black curves) in addition to chain extension with 400 units of BzMA (blue and purple curves).

Entry	Sample Code	Residual Mass	
		(%)	
1	D-MPS ₄₀	41.8	
2	D-MPS ₆₅	40.6	
3	D-IPS ₄₀	32.6	
4	D-IPS ₆₅	36.5	

Table S2. Residual mass from TGA for different macroRAFT agents.

The predicted residual mass of our alkoxysilane macroRAFT agent precursors is estimated as follows:

- Effects due to polymer end-groups are neglected;
- The alkoxysilane group within the polymer backbone leads to the formation of silica upon elevated heating under TGA conditions which is left as residual at the conclusion of the measurement; all carbon, hydrogen (and additional oxygen) within the polymeric structure is lost via thermal decomposition.

For poly(MPS) and poly(IPS) respectively, the mass fraction of Si in the structure is:

MPS: % Si = 28/248 = 11.3 % (by mass) IPS: % Si = 28/332 = 8.4 % (by mass) Assuming all Si present converts to silica, the predicted residual mass is:

Residual mass (MPS): = 24.3 % Residual mass (IPS): 18.1 %

This predicted residual mass represents a lower bound on the actual value, which is $\sim 15~\%$ greater. We postulate that a significant carbon content remains, potentially incorporated into the cross-linked residue.

Figure S7. RAFT Polymerization of BzMA in ethanol. (Top): PISA process in the presence of a solvophilic poly(MPS) block; (Bottom): Absence of poly(MPS) block, showing polymer precipitation.

Figure S8. SEC distributions of the MPS- and IPS-based macroRAFT agents with 65 monomer repeat units in addition to subsequent chain extension with 400 units of benzyl methacrylate.

Entry	Stabilizer	Target BzMA DP	BzMA conversion	dz (nm)/PDI (DLS)	EM Observation
37	T-MPS40	100	0.99	231/0.22	Spheres, some vesicles
38		200	0.99	930/0.04	Vesicles
39		300	0.99	648/0.07	Vesicles
40		400	0.99	995/0.18	Vesicles
41	T-MPS ₆₅	100	0.99	219/0.82	Rods, Ill-defined
42		200	0.99	150/0.18	Lumpy rods
43		300	0.99	570/0.55	Rods and spheres
44		400	0.91	475/0.66	Vesicles and spheres

Table S3. MPS trithiocarbonate results

Table S4. IPS trithiocarbonate results

Entry	Stabilizer	Target BzMA DP	BzMA conversion	dz (nm)/PDI (DLS)	EM Observation
62 CT257'		400	0.98	129/0.06	Spheres
63 CT245		800	0.93	180/0.03	Spheres
64 CT321	I-IP540	1200	0.85	262/0.02	Spheres
65 CT322'		2500	0.99	447/0.05	Spheres
66 CT259	TIDC	400	0.99	132/0.15	Spheres
67 CT319	1-12565	1000	0.96	144/0.07	Spheres

Table S5. Number-average molecular weight and dispersity values for various macroRAFT agents after chain extension with 400 BzMA units.

Stabilizer	Entry	M _n (SEC) (kDa)	Ð
	23	63.8	3.69
MDC	36	68.1	5.12
MF 5	40	84.2	4.54
	44	76.0	8.27
	48	68.9	1.62
IDC	58	91.8	1.51
115	62	57.2	1.36
	66	54.3	1.55

Predicted Size of Hybrid Polymer-Silica Particles After TEOS Growth

$$d_{pred} = d_{seed} \sqrt[3]{\frac{1.8x + 1.18}{1.8x}}$$
$$x = \frac{seed (g)}{silica (g)}; silica (g) = \frac{m_{TEOS} \times 61}{208}$$

The density of the silica shell is assumed to be $\sim 1.8 \text{ g/cm}^3$ and the density of the seed particle is assumed to be equivalent to the density of poly(benzyl methacrylate), which is 1.18 g/cm³.

Reference: Tissot *et al., Macromolecules,* **2001,** 34, 5737.