Preparation of Glucose Responsive Polyelectrolyte Capsules with Shell Crosslinking via Layer-by-Layer Technique and Sustained Release of Insulin

Dongjian Shi^{a*}, Maoshuang Ran^a, He Huang^a, Li Zhang^a, Xiaojie Li^a, Mingqing Chen^a,

Mitsuru Akashi^b

^a The Key Laboratory of Food Colloids and Biotechnology Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
^b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan

Author to whom correspondence should be addressed;

E-Mail: mqchen@jiangnan.edu.cn, djshi@jiangnan.edu.cn

Tel.: +86-510-85917019; Fax: +81-510-85917763.

Scheme S1 Schematic representation for Synthesis of CS-g-CPBA polymer

Fig. S1 DLS results and SEM images of SiO_2 nanoparticles

Fig. S2 TGA curves of SiO₂-NH₂ microspheres (a), CS-*g*-CPBA_{0.31} (b) and Alg (c) polymers, (Alg/CS-*g*-CPBA_{0.31})₅@SiO₂ nanoparticles (d) and (Alg/CS-*g*-CPBA_{0.31})₅ capsules after crosslinking (e).

Fig. S3 Size change of (Alg/CS-g-CPBA_{0.31})₉ capsules without (a) and with 0.5 % Ca²⁺ (b) at the temperature of 37 °C, salt concentration of 0.1M and pH value of 7.4

Fig. S4 Morphology changes of $(Alg/CS-g-CPBA_{0.31})_9$ capsules without Ca²⁺ (a-c), with 0.5 (d-f) and 1.0 % Ca²⁺ (g-i) after treatment of 20 mg/mL of glucose for 4 h (a, d, g), 8 h (b, e, h) and 12 h (c, f, i).

Fig. S5 Chemical structures of GG, MM, and GM block in alginate

Fig. S6 Effects of glucose concentration on diameters of (Alg/CS-g-CPBA_{0.09})₉ (a-c), (Alg/CS-g- CPBA_{0.16})₉ (d-f) capsules without Ca²⁺ (a and d) and with 0.5% (b and e) and 1 % (c and f) of Ca²⁺

Fig. S7 (a) UV-vis spectra of the $(Alg/CS-g-CPBA_{0.31})_n$ $@SiO_2$ nanoparticles with different layer numbers. (b) the changes of the insulin concentration with different layer numbers

Fig. S8 Glucose-responsive release of insulin by (Alg/CS-g-CPBA_{0.09})₉ (a-b) and (Alg/CS-g-CPBA_{0.16})₉ (c-d) capsules without (a and c) and with (b and d) 0.5 % Ca²⁺

Fig. S9 CD spectra of native insulin (a) and insulin released from complexes (b)