SUPPORTING INFORMATION

Aggregation-Induced Emission Star Polymer with pH and Metal Ion Responsive Fluorescence

Yuming Zhao,^{a,c} Wen Zhu,^a Ying Wu,^b Lin Qu,^b Zhengping Liu^b and Ke Zhang*a,^c

^a State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, The Chinese Academy of

Sciences, Beijing 100190, China.

^b Institute of Polymer Chemistry and Physics, Beijing Key Laboratory of Energy Conversion and Storage

Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

Corresponding author: Fax: +86-010-62559373; E-mail: kzhang@iccas.ac.cn

Figure S1. TGA curves of star polymer 1 (black) and star polymer 2 (red).

Figure S2. ¹H-NMR spectra of (A) M1, (B) M2, (C) M3 and (D) bi-Nor in CDCl₃.

Figure S3. ¹H-NMR spectrum of poly(M1)₂₀ polymerization solution without precipitation in CDCl₃.

Figure S4. Recycle test of pH value of star polymer 2 aqueous solution (16 mg/L, 3 mL) by alternatively bubbling CO_2 (3 min) and N_2 (3 min).

Figure S5. Fluorescence intensity of the aqueous solution of **star polymer 2** (16 mg/L, pH = 7) contianing Mg⁺ (193 μ mol/L) in the presence of other metal ions of Fe³⁺, Fe²⁺, Cu²⁺, Ce⁴⁺, Ca²⁺, Cd²⁺, Ru³⁺, Ni²⁺, In³⁺, Co²⁺, and Zn²⁺ (193 μ mol/L).

Figure S6. (A) Fluorescence intensity ratio (I/I_0 , 473 nm) of **star polymer 2** aqueous solution (16 mg/L, pH = 11) in the presence of metal ions Mg²⁺, Fe³⁺, Fe²⁺, Cu²⁺, Ce⁴⁺, Ca²⁺, Cd²⁺, Ru³⁺, Ni²⁺, In³⁺, Co²⁺ and Zn²⁺ (193 µmol/L), in which I_0 was used as the fluorescence intensity of **star polymer 2** aqueous solution without metal ion (blank). (B) Fluorescence spectra of **star polymer 2** aqueous solution (16 mg/L, pH = 11) with different concentration of Mg²⁺. (C) Fluorescence intensity ratio (I/I_0 , 473 nm) of **star polymer 2** aqueous solution (16 mg/L, pH = 11) in the presence of Mg²⁺ with different concentration. The insert is the corresponding

fluorescence photograph of star polymer 2 aqueous solution (0.9 mg/mL, pH = 11) without (left) and with (right) Mg^{2+} irradiated under UV of 365 nm.

Figure S7. Fluorescence intensity ratio (I/I_0 , 473 nm) of **star polymer 2** aqueous solution (16 mg/L, pH = 1) in the presence of metal ions Mg²⁺, Fe³⁺, Fe²⁺, Cu²⁺, Ce⁴⁺, Ca²⁺, Cd²⁺, Ru³⁺, Ni²⁺, In³⁺, Co²⁺ and Zn²⁺ (193 µmol/L), in which I_0 was used as the fluorescence intensity of **star polymer 2** aqueous solution without metal ion (blank).