Electronic Supplementary Information

A straightforward approach for one-pot synthesis of noncovalently connected graft copolymers with unique selfassembly nanostructures

Liang Ding,^{*}a Wei Song,^{*}a Ruiyu Jiang,^a Lei Zhu^{*}b

Fig. S1 ¹H NMR spectra for (a) Ad-diene monomer, **1a**, (b) linear polymer, **1a**, and (c) supramolecular graft copolymer, **1a**. (** CDCl₃, * DMSO- d_6 and H₂O)

Fig. S2 ¹H NMR spectra for (a) Ad-diene monomer, **1b**, (b) linear polymer, **1b**, and (c) supramolecular graft copolymer, **1b**. (** CDCl₃, * DMSO-*d*₆ and H₂O)

Fig. S3 ¹H NMR spectra for (a) Ad-diene monomer, **1c**, (b) linear polymer, **1c**, and (c) supramolecular graft copolymer, **1c**. (** CDCl₃, * DMSO- d_6 and H₂O)

Fig. S4 GPC traces of the Polymers via ADMET polymerization of Ad-diene monomers using **C3** as catalyst.

Table S1 Conditions for ADMET polymerization of Ad-diene monomers and analytical data of the polymers^a

Entry	Monomer	Catalyst	Yield	Т	$M_{ m n,GPC}^{ m c}$	$M_{ m w}/M_{ m n}^{ m c}$
			(%) ^b	(°C)		
1	1a	C1	_	60	_	_
2	1a	C2	87	60	2100	2.05
3	1 a	C3	84	60	1600	1.70
4	1 a	C3	90	80	1800	1.88
5	1b	C1	84	60	4300	1.65
6	1b	C2	75	60	7200	1.83
7	1b	C3	86	60	5700	1.66
8	1b	C3	86	80	6100	1.75
9	1c	C1	89	60	7500	1.58
10	1c	C2	82	60	11200	1.82
11	1c	C3	93	60	9300	1.64
12	1c	C3	91	80	10100	1.79

^a Polymerizations were conducted at 60–80 °C for 24 h using $[M/C]_0 = 50$: 1.

^b Isolated yield after precipitation, and obtained gravimetrically from the dried polymer.

^c Determined by GPC in THF relative to monodispersed polystyrene standards.

Fig. S5 ¹H NMR spectrum for alkyne-ended MPEG. (** CDCl₃)

Fig. S6 ATR–IR spectra for (a) azide-modified β -CD and (b) MPEG-substituted β -CD.

Fig. S7 GPC traces of supramolecular graft copolymer, 1c by ADMET polymerization using different ratios of M1c/MPEG- β -CD.

Fig. S8 Size and distribution of polymeric nanoparticles determined by means of DLS (a) SG-P1a, (b) SG-P1c, and (c) L-P1c.

Scheme S1 Schematic Illustration of Supramolecular Graft Copolymer via One-Pot ROMP and the Host–Guest Recognition.

Fig. S9 ¹H NMR spectra for (a) Ad-ROMP monomer and (b) supramolecular macromonomer. (* DMSO- d_6 and H₂O)

Fig. S10 GPC traces of MPEG- β -CD and polymer obtained by ROMP.