Supporting information for

Advantages of poly(vinyl phosphonic acid)-based double hydrophilic block copolymers for the stabilization of iron oxide nanoparticles

Karolina H. Markiewicz,¹ Lucie Seiler,² Iwona Misztalewska,¹ Krzysztof Winkler,¹ Simon Harrisson,² Agnieszka Z. Wilczewska,^{1,*} Mathias Destarac,^{2,*} Jean-Daniel Marty^{2,*}

1 Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok

2 Laboratoire des Interactions Moléculaires et Réactivités Chimiques et Photochimiques, Université de Toulouse, CNRS UMR 5623, 31062 Toulouse Cedex 09, France

Figure S1A. SEC-RI chromatograms of polymers and copolymers used in reported study.

Figure S1B. ¹H NMR and ³¹P NMR spectra of polymers used in reported study.

Figure S1C. ¹H NMR spectra of copolymers used in reported study.

Figure S1D. ³¹P NMR spectra of copolymers used in reported study.

	dn/dc	[monomer] ₀	[X]₀	Conv	$M_{n th}^{a}$	M _{n, NMR} ^b	M _n , sec ^c	Ð	DPn
	(mL/g)	(mol/L)	(mol/L)	(%)	(g∙mol⁻¹)	(g∙mol⁻¹)	(g·mol⁻¹)		(SEC)
Ρνρα _{1κ}	0.144	7.5	0.65	0.85	1253	-	2926	1.19	-
PVPA _{2K}	0.144	7.5	0.32	0.85	2346	-	4861	1.09	-
PEG _{2K}	0.131	-	-	-	2188	-	2330	1.09	-
РЕG₅к	0.131	-	-	-	5176	-	5740	1.00	-
РЕG _{2К} - <i>b</i> - РVPA _{0.5К}	0.134	4.48	0.24	0.50	3188	2890	2775	1.11	4.1
РЕG _{2К} - <i>b</i> - PVPA _{1К}	0.135	4.80	0.16	0.50	3815	3525	3480	1.17	10.6
РЕG _{2К} - <i>b</i> - РАА _{0.5К}	0.141	1.55	0.22	0.99	2690	2770	2863	1.03	7.4
РЕG _{5К} - <i>b</i> - РVPA _{0.5К}	0.132	2.90	0.25	0.35	5615	5543	6360	1.09	5.7

Table S1. Summary of molecular weights of diblock copolymers used for stabilization of IONP basedon SEC and ¹H NMR.

 $^{a}M_{n th} = ([monomer]_{0}/[X]_{0})\cdot Conv \cdot (Mmonomer) + M(X).$

 $M_{VPA} = 108g/mol$ $M_{AA} = 72g/mol$ $M_X = 194g/mol$ $M_{PEG2K-X} = 2188 g/mol$ $M_{PEG5K-X} = 5176 g/mol$ ^bDetermined by ¹H NMR taking the weight of the PEG blocks into account. ^cMeasured by SEC-RI-MALS.

Figure S2. Effect of block copolymer concentration on NP growth for constant Fe concentration. TEM photographs of IONP@PVPA_{0.5K}-b-PEG_{2K} samples of different [VPA]:[Fe] molar ratio.

Figure S3. Effect of block copolymer concentration on NP growth for constant Fe concentration. Correlation coefficient graphs of IONP@PVPA_{$0.5K}-b-PEG_{2K}$ samples of different [VPA]:[Fe] molar ratio.</sub>

Figure S4. Magnetisation as a function of external magnetic field measured for IONP@PVPA $_{0.5K}$ -b-PEG $_{2K}$ at various temperatures.

Figure S5. Correlation coefficient graphs of polymer $PVPA_{2K}$ solution (0.1wt%) and its mixture with iron oxide precursors ([VPA]/[Fe] = 1).

Figure S6. XRD pattern of IONP@PAA_{0.5K}-b-PEG_{2K} (P:Fe mass ratio 10:1).