FigSupplementary information

L. Wöckel,^a A. Seifert,^a C. Mende,^b I. Roth-Panke,^b L. Kroll^b and S. Spange^{*a}

a Polymer Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany.

b Department of Lightweight Structures and Polymer Technology, Technische Universität Chemnitz, 09107 Chemnitz, Germany.

Fig. S 1 Liquid ¹H-NMR spectra of the reaction of a) pMBC and b) mMBC with trifluoromethanesulfoic acid (TFMSA) in CDCl₃ obtained at different times.

To study the reaction mechanism of the cationic polymerization of carbonates, the reaction was monitored with liquid ¹H-NMR spectroscopy. The polymerization was done at room temperature using trifluoromethanesulfonic acid (TFMSA, tenth mol regarding carbonate). Different time intervals were chosen to take a NMR sample from the reaction mixture. The ¹H-NMR signal **A** (-CH₂- of carbonate) was integrated while calibrating the naphthaline standart and a decrease of carbonate conzentration was determined. In ¹H-NMR spectra methylol signals (-CH₂OH) between 4.4 and 4.7 ppm appear. As well traces of methylether bridges (-CH₂OCH₂-) in the region of 4.7 and 4.9 ppm can be detected. The signals of methylenbridges (-CH₂-), which can be found between 3.3 and 4.0 ppm, increases depending on time.

All three carbonates can not be investigated with the same acid catalyst. The least reactive *m*MBC shows no polymerization with trifluoroacteic acid (TFA, $pK_a^{aq} \sim 0^1$), methanesulfonic acid (MSA, $pK_a^{aq} \sim -2^1$) and *p*-toluenesulfonic acid (*p*TS, $pK_a^{aq} -2.8^1$) in solution at room temperature. A strong acid trifluoromethansulfonic acid (TFMSA, $pk_a^{aq} \sim -13^1$) is nessecary to polymerized *m*MBC. Additionally, reaction time of several days are nessecary and low conversions can be monitored within *m*MBC polymerization. DFC is too reactive for polymerization with TFMSA.

Extensive investigations on molecular structure formation of anisolic resins have not been reported in literature, yet. The assignment of NMR signals were performed according the published NMR data of phenolic resins because anisol as a derivative of phenol can likewise polymerize to methylene bridged anisolic resins. A overview of possible structure units and the chemical shifts in ¹H- and ¹³C-NMR were shown in Table S 1 ^{2–7}.

Table S 1 Molecular structure units in phenolic resin and the chemical shifts in ¹H and ¹³C-NMR.

Structure unit		Chemical shift	Structure unit	Chemical shift	
		[ppm]			
C _{Aryl} CH ₃		18	C _{Aryl} CH ₃	2.3	
$C_{Aryl}CH_2C_{Aryl}$	0,0'-	30	C _{Aryl} CH ₂ C _{Aryl} -	3.5-4.0	
	o,p'-	35			
	p,p'-	40			
C _{Aryl} CH ₂ -OH		58-65	$C_{Aryl}CH_2$ -OH	4.4-4.7	
C _{Aryl} CH ₂ -O-CH ₂ C _{Aryl}		66-72	C _{Aryl} CH ₂ -O-	4.8	
			CH ₂ C _{Aryl}		
C _{Aryl} OCH ₃		149-156	C _{Aryl} OCH ₃	3.7	
C _{Aryl} COOH		171	CArylCOOH	11	
C _{Aryl} CHO		194	C _{Aryl} CHO	10	

Fig. S 2 ATR-FTIR spectra of anisolic resins and polyfurfuryl alcohol resin obtained by cationic polymerization of **pMBC**, **mMBC** and **DFC**.

Fig. S 3 DSC measurement a) and ATR-FTIR spectra b) of polymers obtained by cationic polymerization of pMBC and mMBC with a surfactant (S) and trioxane (TO) at 90 °C.

Fig. S 4 Liquid ¹H-NMR of methoxybenzyl carbonates a) pMBC and b) mMBC compared to solid state ¹H-NMR of polymers without and under addition of 1,3,5-trioxane.

Fig. S 5 Liquid ¹H-NMR of difurfurylcarbonate (DFC) compared to solid state ¹H-NMR of the polymer.

Low condensated polymers of *p*MBC and *m*MBC show sharp peaks in ¹H solid state NMR because of the flexibility of structure moieties. In contrast polymers crosslinked with 1,3,5-trioxane (TO) show broad signals. The polymerized DFC exhibit as well a braod signal even without adding a cross linking agent. The reason for this is that furfuryl moiety undergoes many side reactions where crosslinked structures obtained. The low condensated polymers of *p*MBC and *m*MBC show sharp signals for aryl, methoxy, methylene and water protons. A signal at 8.8–9.2 ppm may attributed to carboxylic acid protons resulteded from a dehydrogenation and oxidation process of methylol species. An exact assignment of signal is in ¹H solid state NMR spectra not possible because a peak broadening and peak shift in solid state.

Fig. S 6 c) Liquid ${}^{13}C-{}^{1}H$ -NMR spectra and e) ${}^{1}H$ -NMR spectra of organic carbonates **mMBC** and **pMBC** compared to anisolic resins polymerized with 1,3,5-trioxane at 90 °C. a), b)and d) show the molecular structures of polymers and monomers with the assignment of atoms to signals in spectra.

Fig. S 7 Pictures of polyfurfuryl alcohol resins obtained by the polymerization of DFC.

Fig. S 8 Pictures of the polyfurfuryl alcohol resins obtained by the polymerization of each one-gram DFC with 10 mol% pTS, at 60 °C under utilization of different dispersing agents. One percent by weight of a PDMS with 0.8-0.9 % silanol groups, Aerosil Ox_50 with a BET surface of 50 m²/g, Aerosil 300 with a BET surface of 300 m²/g and the polydimethylsiloxane-based surfactant (S) with the designation Dabco[®] DC 193 was used in each experiment. As well, a polymerization with five percent by weight of Dabco[®] DC 193 was performed.

Fig. S 9 TG-MS measurements of polymers obtained by cationic polymerization of pMBC and mMBC at 100 °C. The released CO_2 was detected with mass spectrometry.

Table S 2. Performed experiments under variation of amount of 1,3,5-trioxane with the molar ratios of monomer (n_M) to acid catalyst (n_{pTS}) and curing agent (n_{TO}) and the used mass ratios of the surfactant (m_S). Furthermore, the endorsement of the label indicated the final polymerization temperature. The mass loss of obtained anisolic resins after extraction, curing and pyrolysis.

Sample	molar ratios	mass ratios	conditions	mass loss Δm [%]		
	[mol%]	[wt%]	T [°C] / t [h]	extraction	thermal treatment	
	n _M : n _{pts} : n _{to}	m _M : m _s	T ₁	DCM, 3d	250 °C, Ar	800 °C, Ar
pMBC/4TO/S_100	1:0.1:1	1:0.01	100/4	89.2	22.7	50.0
mMBC/1TO/S_100	1:0.1:0.3	1:0.01	100/4	14.3	6.9	46.3
<i>m</i> MBC/2TO/S_100	1:0.1:0.7	1:0.01	100 / 4	14.1	12.5	38.5
<i>m</i> MBC/4TO/S_100	1:0.1:1	1:0.01	100 / 4	12.9	15.6	37.3
<i>m</i> MBC/6TO/S_100	1:0.1:1.3	1:0.01	100 / 4	10.1	16.6	36.3
pMBC/1TO/S_90	1:0.1:0.3	1:0.01	90 / 4	*	15.0	55.9
<i>m</i> MBC/1TO/S_90	1:0.1:0.3	1:0.01	90 / 4	*	17.1	55.1

* soluble in DCM

Fig. S 10 Pictures of the anisolic resins obtained by polymerization of mMBC and pMBC with 1,3,5-trioxane.

Fig. S 11 a) DSC measurement b) and ATR-FTIR spectrum of polymers obtained by cationic polymerization of pMBC and mMBC with a surfactant (S) and different trioxane (TO) contents at 100 °C.

Fig. S 12 a) Liquid ¹³C-{¹H}-NMR spectra and b) ¹H-NMR spectra of extracts (labeled with E) obtained after extraction with dichlormethane.

The extracts of polymers were investigated by means of ¹H- and ¹³C-{¹H}-NMR spectroscopy dissolving them in CDCl₃. The ¹³C-{¹H}-NMR spectra (Fig. S 12a) show signals for methylene (A) (29–42 ppm), methylol (B) (58–63 ppm), methylenether groups (C) (65–75 ppm) and aromatic carbons^{2,3}. The extract of *p*MBC/4TO/S contains of *o,o'-*, *o,p'-* and *p,p'-*methylene linked anisolic resins which can be attributed to signals at 29.8, 35.1 and 40.6 ppm in ¹³C-{¹H}-NMR, respectively. The *m*MBC/4TO/S_100E and *m*MBC/1TO/S_100E constists almost of *p*TS which can be seen in strong signals in the ¹H- and ¹³C-NMR spectra (Fig. S 12a, b). In ¹H-NMR the protons of methylene groups can be found between 3.5-4.0 ppm whereas methylol and methylenether groups situated between 4.4 and 4.8 ppm⁴. The sample *p*MBC/4TO/S_100E shows no ether signals in NMR. The amount of methyleneether species in extracts of *m*MBC can not be determined because the signals were overlaid with methylolprotons in ¹H-NMR. Traces of carbonate monomer and surfactant found, too. Additional, in extract of polymers produced with *m*MBC carbonic acid signal were found at 10.7 ppm. Signals for dichlormethan the extraction solvent were found in ¹H-NMR, too.

Fig. S 13 a) The mechanism for levulinic acid formation from the reaction of furfuryl alcohol with acids⁸. b) Liquid ${}^{13}C-{}^{1}H$ -NMR spectra and b) ${}^{1}H$ -NMR spectra of extracts (labeled with E) obtained after extraction of DFC/S_60 with dichlormethane.

The polymer DFC/S_60 shows a extractable content of 24.6 %. The liquid ${}^{13}C-{}^{1}H$ -NMR spectra (Fig. S 13b) and ${}^{1}H$ -NMR spectra (Fig. S 13c) of the extract exhibit mainly signals of pTS and levulinic acid. Leviulinic acid is a side product of the cationic polymerization of furfuryl alcohol due to a hydrolytic furan ring opening⁸. The mechanism is shown in Fig. S 13a.

Fig. S 14 SEM images of the anisolic resins obtained by cationic polymerization mMBC at 100 °C with 1,3,5-trioxane. SEM images of the annealed (A) anisolic resins at 250 °C. The inset shows the picture of the polymer foam.

Fig. S 15 SEM images of the anisolic resins obtained by cationic polymerization mMBC at 100 °C with 1,3,5-trioxane. SEM images of the annealed (A) anisolic resins at 250 °C. The inset shows the picture of the polymer foam.

Fig. S 16 The cumulative volume and pore size distribution of DFC/S_60-C and mMBC/1TO/S_90-A obtained by mercury porosimetry measurement.

- 1 D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth and M. Forsyth, *Chem. Commun.*, 2006, 1905.
- 2 X. Zhang, A. C. Potter and D. H. Solomon, *Polymer*, 1998, **39**, 399–404.
- 3 G. E. Maciel, I. S. Chuang and L. Gollob, Macromolecules, 1984, 17, 1081–1087.
- 4 P. W. Kopf and E. R. Wagner, J. Polym. Sci. Polym. Chem. Ed., 1973, 11, 939–960.
- 5 I. S. Chuang and G. E. Maciel, *Macromolecules*, 1991, **24**, 1025–1032.
- 6 I. S. Chuang and G. E. Maciel, Annu. Rep. NMR Spectrosc., 1994, 29, 169–286.
- 7 A. Gardziella, L. A. Pilato and A. Knop, Phenolic resins: Chemistry, Application, Standardization,
- Safety and Ecology, Springer, 2nd Completely Revised Edition., 2000.
- 8 A. M. Nathanael Guigo, Polym. Degrad. Stab., 2009, 94, 908–913.