## Synthesis and post-polymerisation modification of an epoxy-functional polycarbonate

Paula K. Kuroishi, Michael J. Bennison, Andrew P. Dove\*

Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

\* a.p.dove@warwick.ac.uk

## **Table of Contents**

| <b>Figure S1</b> SEC chromatograms (CHCl <sub>3</sub> , RI) of PTMOC prepared from 4-methoxybenzyl alcohol catalysed by A) 5 mol% of DBU, B) 5 mol% of DBU and 5 mol% of TU, C) 5 mol% of TBD and D) 1 |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| mol% of TBD.                                                                                                                                                                                           | S2 |
| Figure S2 <sup>13</sup> C NMR spectrum of PTMOC <sub>69</sub> (CDCl <sub>3</sub> , 125 MHz, 298 K).                                                                                                    | S2 |
| <b>Figure S3</b> <sup>1</sup> H NMR spectra of functionalisation of PTMOC with benzylamine with different catalysts (CDCl <sub>3</sub> , 250 MHz, 298 K).                                              | S3 |
| Figure S4 SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 12.5$ kg mol <sup>-1</sup> ; $D_M = 1.15$ ) and                                                                                         |    |
| after post-polymerisation functionalisation with benzylamine using different catalysts.                                                                                                                | S3 |
| Figure S5 SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 9.7$ kg mol <sup>-1</sup> ; $\mathcal{D}_M = 1.16$ ) and                                                                                |    |
| after post-polymerisation functionalisation with diisopropylamine ( $M_n = 0.9$ kg mol <sup>-1</sup> ; $D_M =$                                                                                         |    |
| 1.15).                                                                                                                                                                                                 | S4 |
| Figure S6 SEC chromatograms (CHCl <sub>3</sub> , RI) of PTMOC before ( $M_n = 7.5$ kg mol <sup>-1</sup> ; $D_M = 1.23$ ) and                                                                           |    |
| after post-polymerisation functionalisation with 1-dodecanethiol catalysed by 12 mol% of LiOH                                                                                                          |    |
| $(M_n = 8.3 (0.5) \text{ kg mol}^{-1}; \mathcal{D}_M = 1.29 (1.04)).$                                                                                                                                  | S4 |
| Figure S7 SEC chromatograms (CHCl <sub>3</sub> , RI) of PTMOC before ( $M_n = 7.5$ kg mol <sup>-1</sup> ; $\mathcal{D}_M = 1.23$ ) and                                                                 |    |
| after post-polymerisation functionalisation with 1.25 equivalents of benzylmercaptan catalysed                                                                                                         |    |
| by 2 mol% of LiOH ( $M_n$ = 9.6 kg mol <sup>-1</sup> ; $D_M$ = 1.17) and 5 mol% of LiOH ( $M_n$ = 9.6 (0.6) kg mol <sup>-1</sup> ; $D_M$                                                               |    |
| = 1.47 (1.09)).                                                                                                                                                                                        | S4 |
| Figure S8 SEC chromatograms (CHCl <sub>3</sub> , RI) of PTMOC before ( $M_n = 12.1 \text{ kg mol}^{-1}$ ; $D_M = 1.28$ ) and                                                                           |    |
| after post-polymerisation functionalisation with 2.0 equivalents of benzylmercaptan catalysed                                                                                                          |    |
| by 2 mol% of LiOH ( $M_n$ = 13.9 kg mol <sup>-1</sup> ; $D_M$ = 1.26).                                                                                                                                 | S5 |
| <b>Figure S9</b> SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 14.2 \text{ kg mol}^{-1}$ ; $\mathcal{D}_M = 1.21$ ) and                                                                         |    |
| after post-polymerisation functionalisation with 1.25 equivalents of thiophenol catalysed by 2                                                                                                         |    |
| mol% of LiOH ( $M_n$ = 18.8 kg mol <sup>-1</sup> ; $D_M$ = 1.19) and with 2.0 equivalents of thiophenol catalysed                                                                                      |    |
| by 2 mol% of LiOH ( $M_n$ = 18.4 kg mol <sup>-1</sup> ; $D_M$ = 1.19).                                                                                                                                 | S5 |
| Figure S10 SEC chromatograms from the RI and UV detectors (DMF) of a post-polymerisation                                                                                                               |    |
| functionalisation of PTMOC with thiophenol catalysed by DBU.                                                                                                                                           | S5 |
| <b>Figure S11.</b> SEC chromatograms (DMR, RI) of PTMOC before ( $M_n = 14.7 \text{ kg mol}^{-1}$ ; $\mathcal{D}_M = 1.15$ ) and                                                                       |    |
| after post-polymerisation functionalisation with thiophenol catalysed by 2 mol% of DBU ( $M_n$ =                                                                                                       |    |
| 19.0 kg mol <sup>-1</sup> ; $\mathcal{D}_{M}$ = 1.16), DMAP ( $M_{n}$ = 16.8 kg mol <sup>-1</sup> ; $\mathcal{D}_{M}$ = 1.10), TBD ( $M_{n}$ = 6.5 kg mol <sup>-1</sup> ; $\mathcal{D}_{M}$ =          |    |
| 2.33) and without addition of any catalyst ( $M_n = 16.4 \text{ kg mol}^{-1}$ ; $\mathcal{D}_M = 1.10$ ).                                                                                              | S6 |
| <b>Figure S12</b> SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 14.2 \text{ kg mol}^{-1}$ ; $\mathcal{D}_M = 1.21$ ) and                                                                        |    |
| after post-polymerisation functionalisation with 4-methoxythiophenol ( $M_n = 19.4 \text{ kg mol}^{-1}$ ; $\mathcal{D}_M =$                                                                            |    |
| 1.19) and with 4-chlorothiophenol ( $M_n$ = 19.5 kg mol <sup>-1</sup> ; $D_M$ = 1.18).                                                                                                                 | S6 |



**Figure S1** SEC chromatograms (CHCl<sub>3</sub>, RI) of PTMOC prepared from 4-methoxybenzyl alcohol catalysed by A) 5 mol% of DBU, B) 5 mol% of DBU and 5 mol% of TU, C) 5 mol% of TBD and D) 1 mol% of TBD.



Figure S2 <sup>13</sup>C NMR spectrum of PTMOC<sub>69</sub> (CDCl<sub>3</sub>, 125 MHz, 298 K).



Figure S3 <sup>1</sup>H NMR spectra of functionalisation of PTMOC with benzylamine with different catalysts (CDCl<sub>3</sub>, 250 MHz, 298 K).



**Figure S4** SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 12.5 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.15$ ) and after post-polymerisation functionalisation with benzylamine using different catalysts.



**Figure S5** SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 9.7$  kg mol<sup>-1</sup>;  $D_M = 1.16$ ) and after post-polymerisation functionalisation with diisopropylamine ( $M_n = 0.9$  kg mol<sup>-1</sup>;  $D_M = 1.15$ ).



**Figure S6** SEC chromatograms (CHCl<sub>3</sub>, RI) of PTMOC before ( $M_n = 7.5$  kg mol<sup>-1</sup>;  $\mathcal{D}_M = 1.23$ ) and after post-polymerisation functionalisation with 1-dodecanethiol catalysed by 12 mol% of LiOH ( $M_n = 8.3$  (0.5) kg mol<sup>-1</sup>;  $\mathcal{D}_M = 1.29$  (1.04)).



**Figure S7** SEC chromatograms (CHCl<sub>3</sub>, RI) of PTMOC before ( $M_n = 7.5 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.23$ ) and after post-polymerisation functionalisation with 1.25 equivalents of benzylmercaptan catalysed by 2 mol% of LiOH ( $M_n = 9.6 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.17$ ) and 5 mol% of LiOH ( $M_n = 9.6 \text{ (0.6) kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.47 (1.09)$ ).



**Figure S8** SEC chromatograms (CHCl<sub>3</sub>, RI) of PTMOC before ( $M_n = 12.1 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.28$ ) and after post-polymerisation functionalisation with 2.0 equivalents of benzylmercaptan catalysed by 2 mol% of LiOH ( $M_n = 13.9 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.26$ ).



**Figure S9** SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 14.2 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.21$ ) and after post-polymerisation functionalisation with 1.25 equivalents of thiophenol catalysed by 2 mol% of LiOH ( $M_n = 18.8 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.19$ ) and with 2.0 equivalents of thiophenol catalysed by 2 mol% of LiOH ( $M_n = 18.4 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.19$ ).



Figure S10 SEC chromatograms from the RI and UV detectors (DMF) of a post-polymerisation functionalisation of PTMOC with thiophenol catalysed by DBU.



**Figure S11.** SEC chromatograms (DMR, RI) of PTMOC before ( $M_n = 14.7 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.15$ ) and after post-polymerisation functionalisation with thiophenol catalysed by 2 mol% of DBU ( $M_n = 19.0 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.16$ ), DMAP ( $M_n = 16.8 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.10$ ), TBD ( $M_n = 6.5 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 2.33$ ) and without addition of any catalyst ( $M_n = 16.4 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.10$ ).



**Figure S12** SEC chromatograms (DMF, RI) of PTMOC before ( $M_n = 14.2 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.21$ ) and after post-polymerisation functionalisation with 4-methoxythiophenol ( $M_n = 19.4 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.19$ ) and with 4-chlorothiophenol ( $M_n = 19.5 \text{ kg mol}^{-1}$ ;  $\mathcal{D}_M = 1.18$ ).