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Introduction on quantifying persistence length
Inextensible polymers that exhibit a resistance to bending are usually described with the worm-like 
chain model.1 The key parameter of this model is the bending stiffness . Describing the position along 𝜅
the polymer chain (length ) with a coordinate , measured along the polymer backbone,  𝐿 𝑠 ∈ (0,𝐿) 𝑟⃗(𝑠)

is the position of a chain segment and  is a unit tangent vector denoting the local 
𝑡̂(𝑠) = 𝑑𝑟⃗

𝑑𝑠
orientation.

The key physics of the bending resistance is captured in the model by introducting an energy penalty 
on gradients of , given by 𝑡̂(𝑠)

𝐸𝑏𝑒𝑛𝑑 =
𝜅
2∫𝑑𝑠|𝑑𝑡̂

𝑑𝑠|2, (S1)

so that higher bending moduli lead to straighter chains. The combined effect of thermal fluctuations 
and bending stiffness then leads to a typical length (measured along the backbone) over which the 
chain orientation decorrelates, the persistence length . This length can be extracted from 𝐿𝑝 = 𝜅/(𝑘𝐵𝑇)

any form of data that describes the local orientation of the polymer chain as a function of contour 
length s, by fitting the tangent vector autocorrelation to its theoretical prediction:2

𝐶(𝑠) = 〈𝑡̂(𝑠) ⋅ 𝑡̂(0)〉 = exp [ ‒
𝑠

2𝑙𝑝
]. (S2)

Here the average is taken over an ensemble of similar chains. The factor 2 in this equation is only 
present for chains adsorbed onto a flat surface, as we study in this paper. In adsorbed chains, the 
tangent vector can be represented with a single angle  indicating the angle between  and a 𝜃(𝑠) 𝑡̂(𝑠)
chosen reference axis in the plane of the surface, and the average can be rewritten as 

. We therefore refer to  as the cosine correlation function.𝐶(𝑠) = 〈cos [𝜃(𝑠) ‒ 𝜃(0)]〉 𝐶(𝑠)
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Persistence length analysis
In order to find the persistence length of adsorbed two-dimensional semi-flexible polymers the 
tangent angles at coordinates along the polymer are calculated from the polymer backbone. From 
these tangent angles the apparent persistence length is calculated for each polymer using cosine 
correlation analysis. 

The polymer backbone of each polymer was obtained by pre-processing the raw image of the polymers 
(Fig. 1a) using the free image-processing software ImageJ based on a similar approach as Graham et 
al.3 Using thresholding and skeletonization (Fig. 1d), i.e. creating a one-pixel-wide backbone by 
eliminating the outer pixels of the polymer, the polymer backbone can be analysed using our 
persistence length analysis script. However, due to pixelation the polymer backbone doesn’t always 
follow the polymer, because the pixel size is large compared to the width of the polymer. This created 
curvature in the backbone that is not present in the polymer, therefore prior to thresholding images 
were interpolated with a factor 9, i.e. each pixel is divided into nine subpixels, where each subpixel is 
given a weighted intensity of its nearest neighbours (Fig. 1b). To further improve localization of the 
polymer backbone the polymer was deconvolved with a 2D Gaussian with the FWHM of the 
experimental point spread function (Fig. 1c). Before thresholding and skeletonization, the image was 
Gaussian-smoothed to improve thresholding. The Gaussian smoothing was necessary to smooth 
inhomogeneities in the intensity caused by deconvolution of a noisy image, the Gaussian kernel used 
was however much smaller than the 2D Gaussian used for devonvolution.
  

Fig. S1. Pre-processing of the raw image to extract the polymer backbone. The raw image of a polymer (a) is pre-processed 
by enhancing contrast and interpolation (b) to improve the shape of the final one-pixel-wide backbone. The polymer is 
deconvolved with a 2D Gaussian to decrease its width (c) and is finally thresholded and skeletonized, resulting in a one-pixel-
wide polymer backbone (d).

The backbone coordinates are then smoothed by fitting a third-order Beziér spline using Matlab (The 
MathWorks Inc., Natick, MA). For each coordinate along the reconstructed polymer, the tangent angle 
is calculated and from these tangent angles the cosine correlation, as defined below, is calculated. 

The persistence length is calculated by fitting the cosine correlation function for two-dimensional (2D) 
fluctuations (equation S3) to the averaged cosine correlation values. When applied to a single 
immobilized polymer an apparent persistence length is obtained, as the polymer is in one of infinite 
configurations. Only when performing cosine correlation on many configurations of one polymer or 
many of the same polymer the persistence length is obtained.
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Simulated polymers using the worm-like chain model
In this paper, we use the term “apparent persistence length” to describe the persistence length of a 
single adsorbed polymer. This quantity is obtained by fitting an exponential function to the cosine 
correlation function usually used to describe the ensemble-average persistence of many chains with 
the same underlying bending stiffness . With the definition , we have, for a chain  𝜅  𝐿𝑝 = 𝜅/(𝑘𝐵𝑇)

adsorbed on a surface,1

.
𝐶(𝑠) = 〈cos [𝜃(𝑠 + 𝑠0) ‒ 𝜃(𝑠0)]〉𝑠0

= 𝑒
‒ 𝑠/(2𝑙𝑝)

(S3)

Here, we average only over different starting points  along the same chain, resulting in a single-chain 𝑠0

apparent persistence length. The fitting procedure focuses on small values of , as this procedure 𝑠
provides poor statistics for .𝑠 > 0.1𝐿

In order to relate the distributions of these apparent persistence lengths to the underlying persistence 
length (intrinsic bending stiffness) of the experimental polymers, we need to know how they are 
influenced by noise and other experimentally unavoidable limitations to accuracy. To this end we 
employ a sample of computer-generated worm-like chains with an underlying (ensemble-averaged) 
persistence length of , and analysed them with the same procedure used to analyse the  𝐿𝑝 = 1.5 𝜇𝑚

TIRF-images from our experiments.

We represent numerical worm-like chains as discrete jointed chains with straight segments of length 
and angles between consecutive segments drawn from a normal distribution with variance  Δ𝑠 Δ𝑠/𝐿𝑝

(see Fig. S2). This procedure amounts to discretizing the integral in equation (S1) and applying the 
equipartition theorem. These angles uniquely determine the shape of the adsorbed chain. We can 
calculate the exact cosine correlation function of this model because it is written in terms of the same 
angle  that defines this correlation. Thus, we have precise values for the apparent persistence 𝜃(𝑠)
length of these chains, the distribution of which we can compare to experiments.

The sample used to generate Figure 7 in the main text consisted of 100 worm-like chains of length 
, represented using 400 segments of  length 25 nm (which is below the pixel size for all 10 𝜇𝑚

subsequent analyses). An example is shown in Figure S2.

Fig. S2. Simulated polymer using the worm-like chain model. (a) Fragment of simulated polymer with  showing ∆𝑠 = 20 µ𝑚

the angles between  between segments. (b) Simulated worm with a 1.5 µm persistence length, a contour length of 10 µm ∆𝜃𝑖

and .∆𝑠 = 25 𝑛𝑚

These simulated polymers were convolved with a two dimensional Gaussian with a full-width-at-half-
maximum (FWHM) equal to the diffraction-limited point spread function of our optical system. This 
resulted in polymers with the same pixelation and resolution as the fluorescence images of the BTA 
polymers. Background Poisson noise was added to mimic the readout noise of the EMCCD together 
with Poisson noise to mimic shot noise. This resulted in images with comparable signal-to-noise (~10) 
and signal-to-background (~2.5) ratios to our experimental images.
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Poissonian noise was generated using the rejection method, a technique to generate random deviates 
from a known and computable distribution function p(x)dx.4 The rejection method requires a 
continuous distribution, whereas the Poisson distribution

𝑃𝑟𝑜𝑏(𝑗) =
𝑗 + 𝜖

∫
𝑗 ‒ 𝜖

𝑝𝑥(𝑚)𝑑𝑚 =  
𝑥𝑗𝑒 ‒ 𝑥

𝑗!
,

(S4)

where j is the number of events occurring in  an interval x, is discrete. This results in a distribution 
function that is zero everywhere, except where m is an integer larger or equal to zero. By defining a 
continuous distribution

𝑞𝑥 (𝑚)𝑑𝑚 =
𝑥[𝑚]𝑒 ‒ 𝑥

[𝑚]!
𝑑𝑚,

(S5)

where [m] is the largest integer less than m, the rejection method can be used. Now when a noninteger 
deviate is generated, it is rounded to the next lower integer part and from this deviate a random 
number is drawn from the Poisson distribution. 

Persistence length analysis of simulated polymers
100 polymers with a 1.5 µm persistence length were simulated using the worm-like chain model. From 
the generated angles the apparent persistence length were calculated using cosine correlation 
analysis. The resulting distribution is shown in Fig. S3a and yields a persistence length of 1.50 ± 0.31 
µm (median ± median absolute deviation, MAD). In order to compare simulations to experiments, 
polymers with the same pixelation and diffraction-limited resolution were generated by convolving 
the simulated polymers with a 2D Gaussian with a FWHM equal to the experimental point spread 
function. Persistence length analysis of convolved and pixelated polymers yielded the distribution of 
apparent persistence lengths shown in Fig. S3b. The resulting persistence length is 1.64 ± 0.36 µm, 
showing an increase in persistence length and slight broadening of the distribution. This shift and 
broadening both increase when shot noise is added to the images to accurately mimic the 
experimental images. The distribution of apparent persistence lengths yields a persistence length of 
1.80 ± 0.44 µm, which means convolution and pixelation with added shot noise results in a 0.3 µm 
increase in persistence length compared to the persistence length of the simulated polymers, where 
both the convolution and pixelation and the added noise contribute equally to the increase.
 
In Fig. S3d and e the apparent persistence lengths of the 100 simulated polymers are correlated to the 
convolved and pixelated polymers (d) and the same polymers with shot noise (e). Both show excellent 
correlation and linear fits with a slope of 1.10 ± 0.01 (d) and 1.18 ± 0.02 (e) again reveal the increase 
in apparent persistence length.
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Fig. S3. Results of persistence length analysis of simulated polymers. (a) Distribution of apparent persistence lengths of 
simulated polymers. The apparent persistence length is directly calculated from the generated angles at the coordinate along 
the polymer, yielding a persistence length of 1.50 ± 0.31 µm. Inset: simulated polymer with a contour length of 10 µm and a 
1.5 µm persistence length. (b) Distribution of apparent persistence lengths of pixelated simulated polymers convolved with 
a 2D Gaussian yields a persistence length of 1.64 ± 0.36 µm. Inset: convolved and pixelated polymer. (c) Distribution of 
apparent persistence lengths of convolved and pixelated polymer with added shot noise yield a persistence length of 1.80 ± 
0.44 µm. Inset: convolved and pixelated polymer with added shot noise. (d) Correlation of apparent persistence lengths of 
100 simulated polymers with the convolved and pixelated version of the same polymer. A linear fit yields a slope a of 1.10 ± 
0.01. (e) Correlation of apparent persistence lengths of 100 simulated polymers with the convolved and pixelated version 
with added shot noise of the same polymer. A linear fit yields a slope a of 1.18 ± 0.02. 



S8

Immobilized BTA polymers experiencing flow
Some polymers experienced local flow, evident from the fact that multiple polymers were aligned and 
stretched in the same direction (Fig. S3). These were excluded from persistence length analysis by eye, 
where the criterion was that flow was present when two or more polymers were aligned in the same 
direction.

Fig. S4. Polymers experiencing flow. Local fluid flow aligns and stretches the polymers.
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Analysis of AFM images of BTA polymers
The height and width of three polymers was measured from AFM images. For each polymer, the height 
and width is determined from Gaussian fits to cross sections along the polymer backbone. The height 
is defined as the amplitude of the Gaussian fit and the width as the full-width-at-half-maximum 
(FWHM). The polymers and distributions of the height and width determined from these polymers are 
shown in Fig.  S5a-c. The difference in height and width between polymers depends on the polymer 
itself, local surface interactions, the applied force and the used AFM tip. The mean height and width 
as determined from these polymers varies significantly between polymers, here we measure heights 
of 1.3 ± 0.3 nm (a), 3.0 ± 0.4 nm (b) and 4.5 ± 0.7 nm (c) and widths of 11 ± 4 nm (a), 20 ± 6 nm (b) and 
27 ± 8 nm (c), respectively. Variations in height and width are due to variations in applied force, AFM 
tip diameter, local differences in hydrophobicity of the surface and polymer-to-polymer variations.

Fig. S5. Height and width analysis from AFM images. Height (red) and width (green) distributions are shown for three polymers 
(a-c) and were determined from Gaussian fits to cross sections along the polymer length. This yields heights of 1.3 ± 0.3 nm 
(a), 3.0 ± 0.4 nm (b) and 4.5 ± 0.7 nm (c) and widths of 11 ± 4 nm (a), 20 ± 6 nm (b) and 27 ± 8 nm (c).  Scale bars in (a-c) are 
1 µm, error bars in (d-e) are standard deviations. 
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To image the BTA polymers we use peak-force tapping mode, where the AFM tip (2 nm tip radius, 
stiffness k = 0.07 – 0.7 Nm) is modulated with a maximum force of 200 pN as feedback.

BTA polymers immobilized on a glass coverslip are fragile, although a few AFM images of 
mostly intact BTA polymers were recorded (see Fig. 3 in the main text and Fig. S5), the majority of BTA 
polymers was severely damaged due to interaction with the AFM tip. In Fig. S6 two examples are 
shown.

Fig. S6. Correlated AFM and TIRF images of damaged BTA polymers. TIRF (a,d), AFM topography (b,e) and merged (c,f) 
images of damaged BTA polymers are shown. (g) and (h) are zooms of the (b) and (e), respectively, to show the damaged 
polymers more clearly. All scale bars are 1 μm.

BTA polymers that remain mostly intact after the first AFM scan are damaged in subsequent 
scans as shown in Fig. S7a-d. Here bundling might result in more stably bound polymers compared to 
the single polymers in Fig. S6. Arrows indicate regions where the polymers are damaged. AFM 
measurements also seem to influence the polymer height in some cases as evidenced by the height 
and width of three regions for multiple scans. The height and width was determined by fitting a 
Gaussian function to a distribution of the height and width determined from Gaussian fits to cross 
sections along the polymer indicated by the shaded regions (1), (2) and (3). The height of the polymer 
decreases (Fig. S7e) for region (2) and (3), but remained constant in region (1). The width (Fig. S7f) 
increases in regions (2) and (3) and decreases again. For region (1) the width remains constant. This 
suggests AFM measurements influence the shape of the polymers, but the degree of influence varies 
between regions and polymer and is mostly influenced by local differences in surface interactions.
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Fig. S7. Sample fragility and damage. (a-d) Four sequential AFM images of the same area showing multiple BTA polymers. 
Arrows indicate parts of polymers being swept away. Dashed lines indicate polymer cross sections shown in (e-g). Scale bars 
are 250 nm. Images were scanned with MSNL-A tips from Bruker (2 nm diameter, k=0.07 Nm) at 500 pN.  Gaussian fit to cross 
sections taken from (a-d) at three different locations show a decrease in polymer height (e) and a slight increase in polymer 
width (f), suggesting that the AFM tip deforms the polymers.
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Comparison of persistence lengths
In Fig. S8 the persistence lengths of ssDNA,5 dsDNA,6 actin7 and microtubules8 are compared to the 
persistence length of BTA (2.2 µm).

Fig. S8. Persistence lengths of different biological supramolecular polymers and BTA.
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