Electronic Supplementary Information for

Copolymerization of alkyl diazoacetate with α , β -

unsaturated aldehyde: synthesis and application

Yan Li, Cheng Chen, Jinlong Wu, Xiangxiang Jia, Yufan Lu, Fangjuan Chen, Lijian Liu*

Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences,

Wuhan University, Wuhan, 430072, China

Contents:

Supplementary Results and discussion	3
XRD curves	3
¹ H NMR and ¹³ C NMR spectroscopy	4
FT-IR spectroscopy	. 14
Thermal properties	. 15
Mechanism studies of copolymerization of EDA and Ac by inhibition of TEMPO	. 18
Single-photon fluorescence spectra of monomers	. 19
Single-photon fluorescence spectra of the copolymers	. 20
Two-photon fluorescence spectroscopy	. 21
Femtosecond pulsed laser excited up-conversion emission spectroscopy	. 23
DFT calculations	. 24
Supplementary Reference:	. 25

Supplementary Results and discussion

XRD curves

XRD curves (Figure S1) reveal that the obtained copolymers are all random.

Figure S1. XRD curves of the copolymers.

¹H NMR and ¹³C NMR spectroscopy

Figure S2. ¹H NMR spectrum of poly(MDA-*co*-Ac).

Figure S3. ¹³C NMR spectrum of poly(MDA-*co*-Ac).

^1H NMR (CDCl₃ with 0.03% v/v TMS, 300 MHz)

Figure S4. ¹H NMR spectrum of poly(ADA-*co*-Ac).

^{13}C NMR (CDCl $_3$ with 0.03% v/v TMS, 400 MHz)

Figure S5. ¹³C NMR spectrum of poly(ADA-*co*-Ac).

Figure S6. ¹H NMR spectrum of poly(ADA-*co*-CA).

Figure S7. ¹³C NMR spectrum of poly(ADA-*co*-CA).

Figure S8. ¹H NMR spectrum of poly(EDA-*co*-EB).

 $^{\rm 13}\text{C}$ NMR (CDCl $_{\rm 3}$ with 0.03% v/v TMS, 400 MHz)

Figure S9. ¹³C NMR spectrum of poly(EDA-*co*-EB).

Figure S10. ¹H NMR spectrum of poly(EDA-*co*-Ci).

Figure S11. ¹³C NMR spectrum of poly(EDA-*co*-Ci).

FT-IR spectroscopy

The FT-IR spectra of the obtained copolymers (**Figure S12**) show that the intense bands at approximately 1700 cm⁻¹ belong to the carbonyl and aldehyde groups. The peak at approximately 1550 cm⁻¹ can be assigned to the azo group derived from EDA.¹

Figure S12. FT-IR spectra of the copolymers.

Thermal properties

Figure S13. TGA curves of the copolymers under nitrogen atmosphere.

Copolymer	T _L /°C ^a
poly(EDA- <i>co</i> -Ci)	194.8
poly(EDA- <i>co</i> -EB)	186.7
poly(ADA- <i>co</i> -CA)	174.5
poly(ADA- <i>co</i> -Ac)	184.2
poly(MDA- <i>co</i> -Ac)	199.2
poly(EDA- <i>co</i> -Ac)	182.2

Table S1 TGA data of the copolymers

 ${}^{a}T_{L}$ is defined as the temperature for 5% loss of weight of the copolymer.

Figure S14. DSC curves of the copolymers. a, poly(EDA-*co*-Ci); b, poly(EDA-*co*-EB); c, poly(ADA*co*-CA); d, poly(ADA-*co*-Ac); e, poly(MDA-*co*-Ac); f, poly(EDA-*co*-Ac). These data are recorded in the 2nd round. T_g means glass transition temperature.

The thermal properties of the obtained copolymers are examined by thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). **Figure S13** is the TGA curves of the copolymers, which shows that all the obtained copolymers are thermostable, losing merely 5% of their weights at temperatures higher than 174.5° C (T_L). The details are summarized in **Table S1**. **Figure S14** is the DSC curves of the obtained copolymers, and the glass transition temperatures (T_g) between 9.1 and 75.5 °C are observed.

Mechanism studies of copolymerization of EDA and Ac by inhibition of TEMPO

The radical inhibitor 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) retards the copolymerization of EDA and Ac significantly. The proton signals of CH_2 =CH in Ac disappear in ten minutes without TEMPO, but sixty minutes should be taken with 0.5 equiv TEMPO (**Figure S15**). In addition, in the reaction with TEMPO, the gas isn't released so extensively and the temperature doesn't rise so rapidly as in that without TEMPO. In conclusion, the copolymerization is a possible radical mechanism.²

Figure S15. TEMPO inhibition effects on the copolymerization of EDA and Ac. Conditions: Ac (5.0 mmol, 1.0 equiv), EDA (5.0 mmol, 1.0 equiv) are mixed at room temperature under blowing nitrogen.

Single-photon fluorescence spectra of monomers

Figure S16 shows that only EB and CA exhibit rather weak fluorescence, and other monomers are almost non-luminescent.

Figure S16. Fluorescence emission spectra of the monomers with slit width of 5.0/5.0 nm. All monomers are measured without solvent. λ_{ex} represents the excitation wavelength here.

Single-photon fluorescence spectra of the copolymers

The single-photon fluorescence spectra of the copolymers, poly(EDA-*co*-Ac), poly(MDA-*co*-Ac), poly(ADA-*co*-CA), poly(EDA-*co*-EB) and poly(EDA-*co*-Ci), are given in **Figure S17**. These polymers not only exhibit down-conversion fluorescence, but also emit up-conversion fluorescence. The maximum emission wavelengths of both down- and up-conversion spectra are the same.

Figure S17. Fluorescence spectra of the copolymers. Concentrations: 1 mg/mL in chloroform and slit width is 5.0/5.0 nm.

Two-photon fluorescence spectroscopy

Figure S18. Two-photon fluorescence spectra of the copolymers. Concentrations: 1 mg/mL in dimethyl sulfoxide (DMSO) excited by different wavelengths.

Table S2. Maximum excitation wavelength (λ_{ex}) and emission wavelength (λ_{em}) of the

copolymers in two-photon fluorescence spectra

Copolymer	λ _{ex} /nm	λ _{em} /nm
poly(EDA- <i>co</i> -Ac)	760	500
poly(MDA- <i>co</i> -Ac)	770	505
poly(ADA- <i>co</i> -Ac)	750	485
poly(ADA- <i>co</i> -CA)	750	480
poly(EDA- <i>co</i> -EB)	770	490
poly(EDA- <i>co</i> -Ci)	770	490

All copolymers can emit fluorescence excited under NIR by a two-photon laser. (Figure S18) All the emission signals can be detected in a wide range from 690 nm to 850 nm. The λ_{ex} and λ_{em} of each copolymer are presented in Table S2.

Femtosecond pulsed laser excited up-conversion emission spectroscopy

Excited by a femtosecond pulsed laser, the quadratic dependence between the laser power and photoluminescence intensity of poly(EDA-*co*-Ac) (**Figure S19a** and **S19b**) and between that of poly(ADA-*co*-Ac) (**Figure S19c** and **S19d**) implies that the emission is the result of a twophoton excitation process.

Figure S19. Femtosecond pulsed laser excited up-conversion luminescence spectra of poly(EDA-*co***-Ac) and poly(ADA-***co***-Ac). a**, Emission spectra of poly(EDA-*co***-Ac) at 780 nm. b**, Logarithmic plots of the dependence of relative two-photon excited fluorescence intensity on excitation power for poly(EDA-*co***-Ac) at 520 nm. c**, Emission spectra of poly(ADA-*co***-Ac) at 760** nm. **d**, Logarithmic plots of the dependence of relative two-photon excited fluorescence intensity on excitation power for poly(ADA-*co***-Ac) at 515 nm. The concentration of poly(EDA-***co***-***Ac***) at 90** Ac) and poly(ADA-*co*-Ac) is 1 mg/mL in DMSO.

DFT calculations

According to DFT calculations of a EDA-EDA-Ac trimer (T) (**Figure S20**), the electrons are mainly distributed in the delocalized electronic orbitals on the backbone of the ring system, forming a highest occupied molecular orbital (HOMO), a HOMO-1, a lowest unoccupied molecular orbital (LUMO), and a LUMO+1. The HOMO and HOMO-1 are generated from the π - π interaction of one -N=N- group, while the LUMO and LUMO+1 derive from the conjugation of two -N=N-s. Thus, the fluorescence is mainly because of the electron radiation transition between intramolecular -N=N- conjugations.

Figure S20. The optimized geometry (A) and molecular orbitals (B) of T by B3LYP/6-31G(d,p).

Supplementary Reference:

- 1. K. Maruoka, M. Oishi and H. Yamamoto, *Macromolecules*, 1996, **29**, 3328-3329.
- H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin and X. P. Zhang, J. Am. Chem. Soc., 2011, 133, 8518-8521.