Supporting Information to:

"Synthesis of degradable poly(ϵ -caprolactone)-based graft copolymers via a "grafting-from" approach"

Panagiotis Bexis^a, Anthony W. Thomas^a, Craig A. Bell^{a,b,c}, and Andrew P. Dove^{a*}

^a Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.

^b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia.

^c Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, 4072, Australia.

Corresponding Authors

* a.p.dove@warwick.ac.uk

Figure S1. ¹H NMR (400 MHz, 298K, CDCl₃) spectrum of α-bromo-ε-caprolactone (αBrCL).

Figure S2. ¹³C NMR (125 MHz, 298K, CDCl₃) spectrum of α -bromo- ϵ -caprolactone (α BrCL).

Figure S3. Stacked ¹H NMR spectra for the ROP of α BrCL against time (400 MHz, 298K, C₆D₆).

Figure S4. DOSY NMR spectrum of the P(αBrCL)-*co*-(CL) copolymer (400 MHz, 298K, C₆D₆).

Figure S5. Plot of f_A vs F_A for the copolymerization of ε -CL [A] and α BrCL [B] catalysed by DPP in benzene leading to reactivity ratios results of r_{ε -CL} = 39.25 and $r_{\alpha BrCL} = 0.016$. (Nonlinear least squares (NLLS) method).

Target (αBrCL/CL)	CL feed ^ª	BrCL feed ^a	CL conv. (%) ^ª	αBrCL conv. (%) [°]	PCL ratio ^ª	PBrCL ratio ^ª
0/100	1	0	4		1	
10/90	0.9	0.1	4.74	4.6	0.51	0.49
20/80	0.8	0.2	5.3	0.85	0.86	0.14
30/70	0.72	0.28	5.4	1.3	0.8	0.2
40/60	0.62	0.38	5.9	0.7	0.89	0.11
50/50	0.52	0.48	4.9	3.6	0.57	0.43
60/40	0.42	0.58	4.7	0.2	0.96	0.04
70/30	0.33	0.67	5.6	0.15	0.97	0.03
80/20	0.21	0.79	5.3	0.16	0.97	0.03
90/10	0.1	0.9	5.6	1.23	0.82	0.18
100/0	0	1		6.4		1

Table S1. Mole fraction of monomers in the initial feed and copolymers.

^aDetermined by ¹H NMR spectroscopy.

Figure S6. Size exclusion chromatograms of PMA polymers grafted-from the $PBrCL_{80}$ macroinitiator, in DMSO (SEC $CHCl_3$, Polystyrene used as standard).

Figure S7. DSC thermograms of (PαBrCL-*co*-PCL)-*g*-PMA polymers (under N₂ atmosphere, second scan measurements, exo down); A) [PεCL₆₀-*co*-PαBrCL₈]-*g*-PMA₁₆₀, B) [PεCL₃₉-*co*-PαBrCL₁₈]-*g*-PMA₃₆₀, C) [PεCL₂₄-*co*-PαBrCL₃₀]-*g*-PMA₆₀₀.