Electronic Supplementary Information

Macrocycle-based Topological Azo-Polymers: Facile Synthesis and

Unusual Photoresponsive Properties

Liang Ding,* Wei Song, Ruiyu Jiang, Lei Zhu*

Content

¹H and ¹³C NMR Spectra

ATR-IR Spectra

GPC Traces

Table

Fig. S1 ¹H NMR and ¹³C NMR spectra for 2-azidoethyl acrylate.

Fig. S2 ¹H NMR and ¹³C NMR spectra for linear azo-polymer, **1**.

Fig. S3 ¹H NMR and ¹³C NMR spectra for linear azo-polymer, **2**.

Fig. S5 ATR–IR spectra for (a) linear azo-polymer, **2** and (b) linear azo-polymer precursor, **3**.

Fig. S6 ATR–IR spectra for (a) cyclic azo-polymer with a hydroxyl group and (b) cyclic azo-polymer with acrylate.

Fig. S8 GPC traces for linear azo-polymers, **1** showing the different molecular weights correlated to different amounts of chain stopper.

Fig. S9 GPC traces for cyclic-linear azo-polymers showing the different molecular weights correlated to different amounts of chain stopper.

Fig. S10 GPC traces for cyclic-linear-cyclic azo-polymers showing the different molecular weights correlated to different amounts of chain stopper.

Fig. S11 GPC traces for hyperbranched and cyclic-hyperbranched azo-polymers showing the different molecular weights correlated to different polymerization times.

Polymer	Yield (%) ^b	[M]/[CS]	$M_{n,GPC}^{c}$	$M_{ m w}/M_{ m n}^{ m c}$	$M_{\rm n,theo}{}^{\rm d}$
<i>L</i> -1	93	10: 1	6500	1.54	5100
	94	20: 1	11800	1.56	9900
	91	30: 1	16900	1.54	14400
C-L	92	10: 1	13900	1.62	11300
	87	20: 1	17700	1.66	14200
	90	30: 1	22300	1.65	19100
C-L-C	88	10: 1	22800	1.71	15700
	92	20: 1	30100	1.79	21800

 Table S1 Characteristic molecular weight data of prepared azo-polymers with

 different amounts of selective chain stoppers via ADMET polymerization^a

^a ADMET polymerization reaction conditions for preparation azo-polymers with diverse structures: polymerization temperature = 50 °C, polymerization time = 24 h, [Monomer] = 2.0 mol/L, [Monomer]: [Chain Stopper] = 10: 1 ~ 30: 1;

^b Obtained gravimetrically from the dried polymer;

^c Determined by GPC in THF relative to monodispersed polystyrene standards;

d For *L*-1 polymers, $M_{n,\text{theo}} = ([\mathbf{M1}]/[\mathbf{CS}]) \times \text{yield} \% \times M_{(\mathbf{M1})} + M_{(\mathbf{CS})} - M_{(\text{ethylene})}$; for *C-L* polymers, $M_{n,\text{theo}} = ([\mathbf{M1}]/[\mathbf{CS}]) \times \text{yield} \% \times M_{(\mathbf{M1})} + M_{(C-\text{Acrylate})} - M_{(\text{ethylene})}$; and for *C-L-C* polymers, $M_{n,\text{theo}}$ $= ([\mathbf{M2}]/[\mathbf{CS}]) \times \text{yield} \% \times M_{(\mathbf{M2})} + 2 \times M_{(C-\text{Acrylate})} - 2 \times M_{(\text{ethylene})}$, where $M_{(\mathbf{M1})} = 523$, $M_{(\mathbf{M2})} = 634$, $M_{(\mathbf{CS})} = 141$, and $M_{(\text{ethylene})} = 28$.

Polymer	Yield (%) ^a	Time (h)	$M_{n,GPC}^{b}$	$M_{\rm w}/M_{\rm n}^{\rm b}$
UD	76	24	3400	1.95
НВ	84	48	8600	1.93
	87	24	9700	1.91
С-НВ	82	48	14600	1.89

Table S2 Characteristic molecular weight data of hyperbranched and cyclic-hyperbranched azo-polymers via ADMET polymerization in different reaction times

^a Obtained gravimetrically from the dried polymer;

^b Determined by GPC in THF relative to monodispersed polystyrene standards.