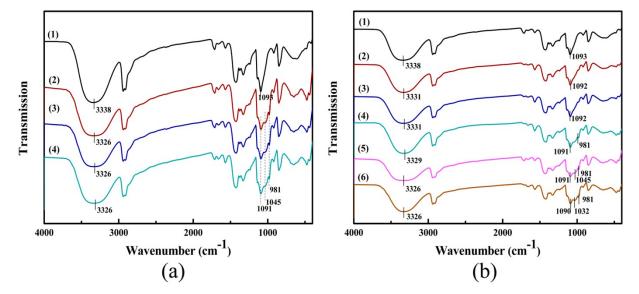
## **Electronic Supporting Information (ESI)**

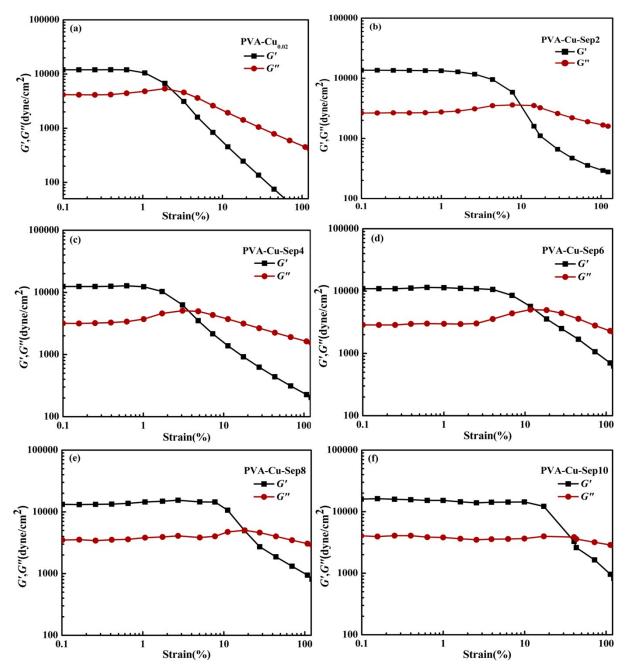
## A facile strategy to fabricate high-stretchable self-healing poly(vinyl

## alcohol) hybrid hydrogels based on metal-ligand interaction and hydrogen

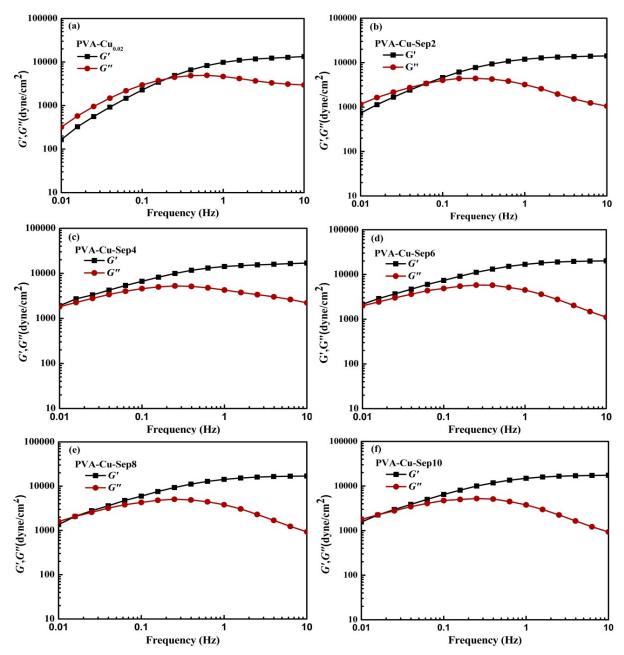
## bonding


Yan Hui,<sup>a</sup> Zhi-Bin Wen,<sup>a</sup> Florence Pilate,<sup>b</sup> Hui Xie,<sup>a</sup> Cheng-Jie Fan,<sup>a</sup> Lan Du,<sup>a</sup> Dan Liu,<sup>a</sup> Ke-Ke Yang<sup>\* a</sup> and Yu-Zhong Wang<sup>a</sup>

<sup>a.</sup> Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610064, China. E-mail: kkyangscu@126.com


<sup>b.</sup> Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, B-7000 Mons, Belgium

| content (v               |          | s process.     |
|--------------------------|----------|----------------|
| Sample                   | WC (%)   | <i>EWC</i> (%) |
| PVA-Cu <sub>0.0025</sub> | 87.7±1.6 | 96.5±0.3       |
| PVA-Cu <sub>0.01</sub>   | 85.5±0.7 | 95.6±0.3       |
| PVA-Cu <sub>0.02</sub>   | 84.4±0.1 | 93.2±0.2       |
| PVA-Cu <sub>0.035</sub>  | 86.8±0.1 | 93.4±0.17      |
| PVA-Cu <sub>0.05</sub>   | 86.3±0.5 | 91.8±0.04      |
| PVA-Cu-Sep2              | 84.4±0.1 | 94.5±0.2       |
| PVA-Cu-Sep4              | 86.5±0.6 | 94.0±0.2       |
| PVA-Cu-Sep6              | 85.4±0.3 | 93.1±0.1       |
| PVA-Cu-Sep8              | 85.9±0.5 | 93.4±0.4       |
| PVA-Cu-Sep10             | 86.9±1.3 | 93.4±0.4       |
|                          |          |                |


 Table S1 The equilibrium water content (EWC) of hydrogels obtained by swelling test and the actual amount of water content (WC) in hydrogels in self-healing process.



**Fig. S1** (a) The FT-IR analyses confirmed the influence of basic environment on the hydrogen bonds between the hydroxyls of PVA and the silanol groups: FT-IR spectra of PVA (1) and PVA-Sep8 in original state (2), PVA-Sep8 with the pH at 7~8 (3) and PVA-Sep8 with the pH at 8~9 (4). (b) FT-IR spectra of PVA -Sep films with different Sep content: (1) 0 wt%, (2) 2 wt%, (3) 4 wt%, (4) 6 wt%, (5) 8 wt% and (6) 10 wt%% Sep, with the pH at 7~8.



**Fig. S2** The strain sweep tests of hydrogels. *G*' and *G*" of (a) PVA-Cu<sub>0.02</sub>,(b)PVA-Cu-Sep2, (c)PVA-Cu-Sep4, (d)PVA-Cu-Sep6, (e)PVA-Cu-Sep8 and (f)PVA-Cu-Sep10 hydrogels as a function of strain (0.1-120%).



**Fig. S3** The frequency sweep tests of hydrogels. *G*' and *G*" of (a) PVA-Cu<sub>0.02</sub>, (b) PVA-Cu-Sep2, (c) PVA-Cu-Sep4, (d) PVA-Cu-Sep6, (e) PVA-Cu-Sep8 and (f) PVA-Cu-Sep10 hydrogels as a function of frequency (0.01-100 Hz).

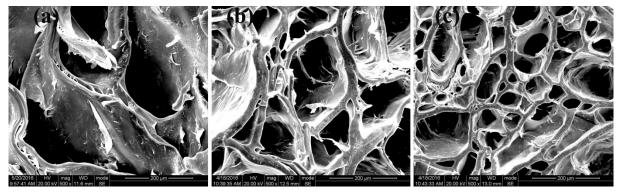



Fig. S4 SEM macroimages of (a) PVA-Cu<sub>0.02</sub>, (b) PVA-Cu-Sep4 and (c) PVA-Cu-Sep8 hydrogel.

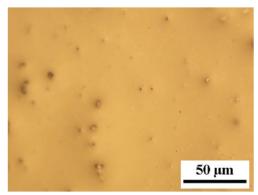



Fig. S5 The macro-image of the cut surface of PVA-Cu-Sep8 hydrogel.