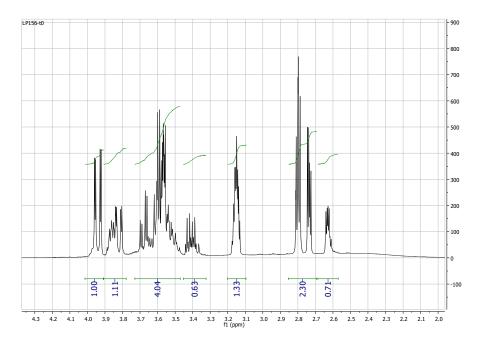
Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

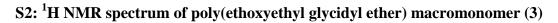
Highly loaded nanoparticles with Gentamicin Sulfate by combination of polyhydroxylated macromonomers and ROMP for the synthesis of bioactive biomaterials

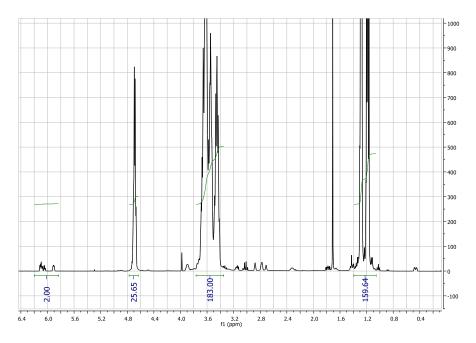
Loïc Pichavant^{a;b}, Hélène Carrié^{a;b}, Marie-Christine Durrieu^b and Valérie Héroguez^a

^a Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France. CNRS, LCPO, UMR 5629, F-33600 Pessac, France

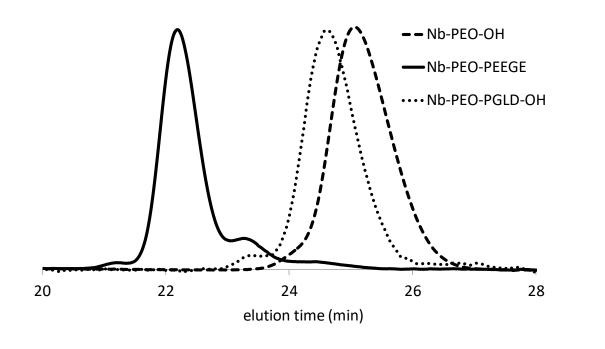

^b Université de Bordeaux, CBMN, UMR 5248, F-33600 Pessac, France ; CNRS, CBMN, UMR 5248, F-33600 Pessac France ; Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France

CORRESPONDING AUTHOR Valérie Héroguez, Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France. CNRS, LCPO, UMR 5629, F-33600 Pessac , France Tel: +33 (0) 5 40 00 22 28 Fax: +33 (0) 5 40 00 84 87 Email: heroguez@enscbp.fr S1: ¹H NMR spectrum of ethoxylethyl glycidyl ether (2)

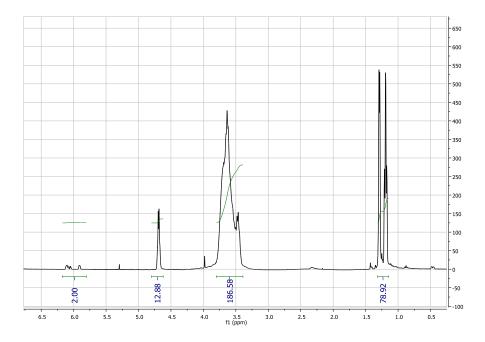

S2: ¹H NMR spectrum of poly(ethoxyethyl glycidyl ether) macromonomer (3)


S3: SEC traces of α -norbornenyl-poly(ethylene oxide)-*b*-polyglycidol based macromonomers (5), (6) and (7)

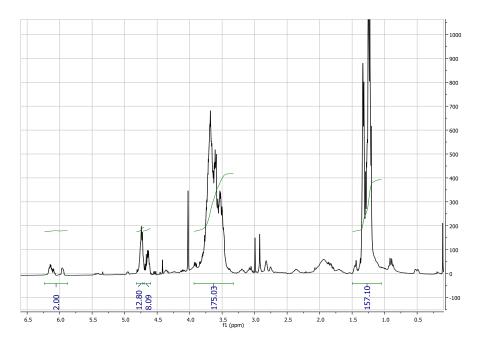
- S4: ¹H NMR spectrum of the modified macromonomers (4) and (8)
- S5: ¹H NMR spectrum of Gentamicin sulfate
- S6: ¹H NMR spectrum of the GS-modified macromonomer (10)
- **S7:** Macromonomer conversion measurements
- S8: Determination of the amount of GS per NPs
- S9: FR-IR spectra of macromonomer (11) and nanoparticles NP6



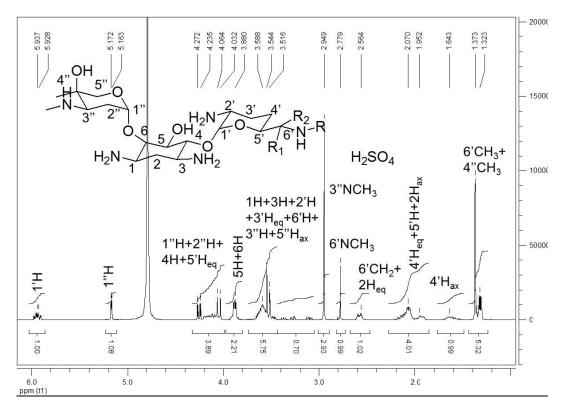
S1: ¹H NMR spectrum of ethoxylethyl glycidyl ether (2)

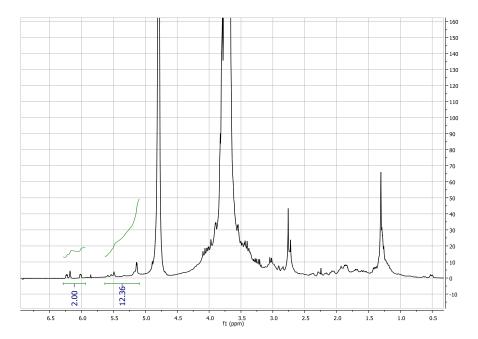


S3: SEC traces of α-norbornenyl-poly(ethylene oxide)-*b*-polyglycidol based macromonomers (5), (6) and (7)



S4: ¹H NMR spectrum of the modified macromonomers (4) and (8)


Macromonomer (4):


Macromonomer (8):

S5: ¹H NMR spectrum of Gentamicin sulfate

S6: ¹H NMR spectrum of the GS-modified macromonomer (10)

S7: Macromonomer conversion measurements

Macromonomer conversions were measured by gravimetric analyses. 1 mL of dispersion was first filtrated with a 0.1 μ m PTFE filter, then the filtrate volume was measured (V_f), and finally this filtrate was evaporated under vacuum overnight in order to keep only the unreacted macromonomers. This residual macromonomers were weighed (m^f_{macro}) and compared to the initial mass. The macromonomer conversion can be calculated with the following equation:

$$\pi_{macro} = 1 - \frac{m_{macro}^f / V_f}{m_{macro}^i / V_i}$$

With,

- m^{i}_{macro} the initial weight of macromonomers introduced of the reaction

- V_i the initial volume

For this calculation, we approximated that the weight of the residual Grubbs catalyst is negligible.

S8: Determination of the amount of GS per NPs

Determination of the Gentamicin concentration in the latex:

The GS concentration in the latex can be calculated with the following equation:

$$C_{GS} = \frac{\pi \times 8 \times n_{Macro-GS} \times M_{GS}}{m_{Nb} + \pi (m_{Macro-GS} + m_{Macro-COOH})}$$

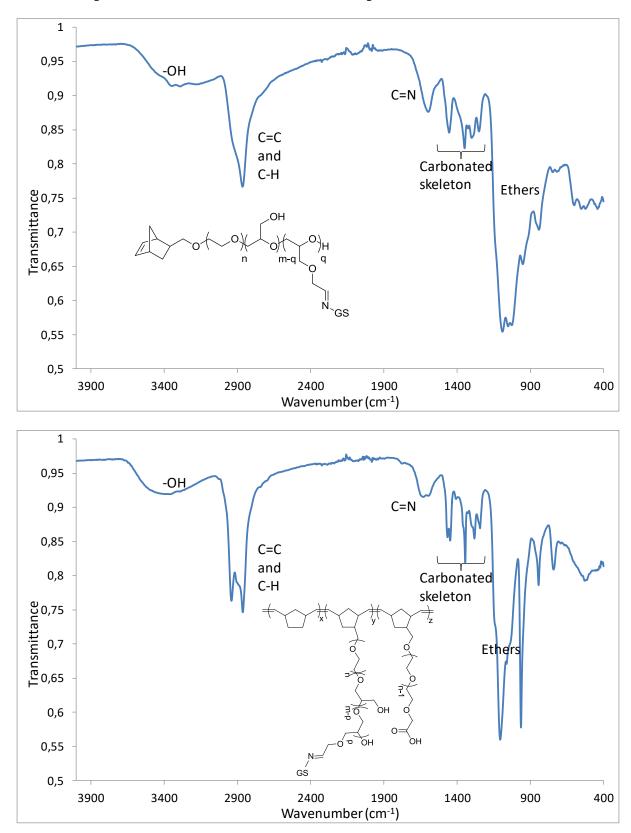
With:

- 8 is the amount of GS molecule linked on a macromonomer
- $n_{\mbox{Macro-GS}}$ the initial amount of macromonomer functionalized with GS
- M_{GS} the molecular weight of Gentamicin
- m_i the initial weight of compound i
- π the conversion of the macromonomers

For this calculation, we assumed that the macromonomers are consumed at the same time regardless the functionalization

NPs	NP3	NP4	NP5	NP6
C_{GS} (mg/g)	245	149	115	182

Determination of the GS amount per NPs:


Knowing the GS concentration in the latex and the volume of an NPs we can approximate the GS amount per NPs:

$$N_{GS/NP} = \frac{C_{GS} \times \rho_{NP} \times V_{NP} \times N_A}{M_{GS}}$$

with:

- C_{GS} : Gentamicin concentration in the latex (in mg/g)
- $\rho_{\text{NP}}\text{:}$ latex density approximated to equal to 1 g/mL
- V_{NP}: volume of a NP (V_{NP}= $\pi D_{NP}^{3/6}$)
- NA: Avogadro number
- M_{GS}: molecular weight of Gentamicin

NPs	NP3	NP4	NP5	NP6
N _{GS} /NP	$38\ 10^6$	$14\ 10^{6}$	$2.4 \ 10^6$	$32 \ 10^6$

S9: FR-IR spectra of macromonomer (11) and nanoparticles NP6