Supporting Information

Aqueous SARA ATRP using Inorganic Sulfites

Carlos M. R. Abreu,^{a,b} Liye Fu,^b Sheiliza Carmali,^b Arménio C. Serra,^a Krzysztof Matyjaszewski^{*b} and Jorge F. J. Coelho^{*a}

^aCEMUC, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal. E-mail: jcoelho@eq.uc.pt

^bDepartment of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA. E-mail: km3b@andrew.cmu.edu

Experimental Section

Materials

Oligo(ethylene oxide) methyl ether acrylate (OEOA₄₈₀, 99%, average molecular weight 480, Sigma-Aldrich) and oligo(ethylene oxide) methyl ether methacrylate (OEOMA₅₀₀, 99%, average molecular weight 500, Aldrich) were passed over a column of basic alumina (Fisher Scientific) prior to use. Na₂S₂O₄ (Sigma–Aldrich, 85 %), Na₂S₂O₅ (Sigma–Aldrich, >99 %), NaHSO₃ (Sigma–Aldrich, >99 %), 2-hydroxyethyl 2-bromoisobutyrate (HEBiB, 95%, Sigma-Aldrich), copper(II) bromide (99.99%, Sigma-Aldrich), sodium chloride (NaCl, 99.5%, Fisher Scientific), tetraethylammonium chloride (TEACl, 98%, Sigma-Aldrich), sodium bromide (NaBr, 99.5%, Fisher Scientific), bovine serum albumin (BSA, ≥98%, Sigma-Aldrich), water (H₂O, HPLC grade, Fisher Scientific), N,N-dimethylformamide (DMF, ACS grade, Fisher Scientific), deuterium oxide (D₂O, 99.9%, Cambridge Isotope Laboratories), and anhydrous magnesium sulfate (99%, Aldrich) were used as received. 1X PBS solution was prepared from 10X PBS (Thermo Fisher Scientific) and HPLC grade water. Tris(pyridin-2-ylmethyl)amine (TPMA),¹ tris[2-(dimethylamino)ethyl]amine (Me₆TREN)² and BSA protein initiator (BSA-O-[iBBr]₃₀)³ were prepared as previously reported in the literature.

Techniques

A syringe pump (KDS Scientific, Legato 101) was used for the continuous feeding of the sulfites at the rate 1 μ L/min (different sulfite aqueous solutions were prepared to obtained different FR_s).

¹H nuclear magnetic resonance (NMR) spectroscopy measurements were performed on a Bruker Avance 500 MHz spectrometer and used to determine the monomer conversion in D_2O .

The chromatographic parameters of the samples were determined using a gel permeation chromatography (GPC) system equipped with a Waters 515 HPLC pump and a Waters 2414 refractive index detector using PSS columns (Styrogel 10², 10³, 10⁵ Å) with DMF containing 10 mM LiBr as the eluent at a flow rate of 1 mL/min at 50 °C. The system was calibrated

with low dispersity PMMA ($M_n = 800 - 1\ 820\ 000$) standards. Before the injection (50 µL) the samples were filtered through a polytetrafluoroethylene (PTFE) membrane with 0.22 µm pore.

The UV-Visible studies were performed using an Agilent 8453 UV-Vis Spectrometer. Dynamic light scattering (DLS) measurements were performed on a Malvern Zetasizer Nano ZS at 25 °C.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed with a Bio-Rad Laboratories Mini-Protean TGXTM Precast Gels (7.5%). Staining was accomplished with Coomassie blue and washed in DI water overnight.

General Procedure for Aqueous SARA ATRP of OEOA

A series of aqueous SARA ATRP using OEOA as monomer were carried out with systematically different conditions to establish the optimal reactions conditions. The conditions used for polymerization of OEOA₄₈₀ generally followed this procedure: NaCl (58.4 mg, 1.0 mmol), OEOA₄₈₀ (2.40 g, 5 mmol), 100 mM stock solution HEBiB (0.2 mL, 0.02 mmol), stock solution of 25 mM CuBr₂ and 200 mM TPMA (40 μ L, 1.0 μ mol of CuBr₂ and 8 μ mol of TPMA) were dissolved in H₂O (7.7 mL). DMF (0.1 mL) was added as internal standard for ¹H NMR analysis. This mixture was added to a 25 mL Schlenk flask and purged with nitrogen for 30 min, and then the flask was placed in an oil bath at 30 °C. A Na₂S₂O₄ aqueous solution (64 mM) was purged with nitrogen, and the solution was continuously injected into the reaction medium using a syringe pump at the rate 1 μ L/min. Samples were taken throughout the reaction for GPC and NMR analysis.

Synthesis of "One-pot" POEOMA-b-POEOA Block Copolymer

NaCl (58.4 mg, 1.0 mmol), OEOMA₅₀₀ (2.50 g, 5 mmol), 100 mM stock solution HEBiB (1.0 mL, 0.10 mmol), stock solution of 25 mM CuBr₂ and 200 mM TPMA (200 μ L, 5.0 μ mol of CuBr₂ and 40 μ mol of TPMA) were dissolved in H₂O (7.7 mL). DMF (0.1 mL) was added as internal standard for ¹H NMR analysis. This mixture was added to a 25 mL Schlenk flask, purged with nitrogen for 30 min, and the flask was placed in an oil bath at 30 °C. A Na₂S₂O₄ aqueous solution (64 mM) was purged with nitrogen, and the solution was continuously

injected into the reaction medium using a syringe pump at the rate 1 µL/min. Samples were taken throughout the reaction for GPC and NMR analysis. The polymerization proceeded for 18 h (98% conversion, $M_n^{\text{th}} = 24600$, $M_n^{\text{GPC}} = 26200$, $M_w/M_n = 1.22$). After that, under continuous flow of nitrogen the excess of polymerization mixture was removed from Schlenk flask until reach a volume of 0.5 mL (POEOMA: 125 mg, 5 µmol; CuBr₂: 2.8 µg, 0.0125 µmol; TPMA: 29 µg, 0.10 µmol). The OEOA₄₈₀ (2.40 g, 5 mmol) and H₂O (7.7 mL) previously bubbled with nitrogen for about 15 minutes were added. An additional Na₂S₂O₄ solution (8 mM) was purged with nitrogen, and the solution was continuously injected into the reaction medium using a syringe pump at the rate 1 µL/min allowed to copolymerize for 20 h.

Grafting from the Protein Initiator BSA-O-[iBBr]₃₀

BSA-O-[iBBr]₃₀ (25.0 mg (protein), 0.01 mmol (initiator)), OEOA₄₈₀ (1.20 g, 2.5 mmol), stock solution of 25 mM CuBr₂ and 200 mM TPMA (20 μ L, 0.50 μ mol CuBr₂ and 4.0 μ mol TPMA) were dissolved in 0.1 M PBS (7.7 mL). DMF (0.1 mL) was added as internal standard for ¹H NMR analysis. This mixture was added to a 25 mL Schlenk flask, purged with nitrogen for 30 min, and then placed in an oil bath at 30 °C. A Na₂S₂O₄ aqueous solution (16 mM) was purged with nitrogen, and the solution was continuously injected into the reaction medium using a syringe pump at the rate 1 μ L/min. The grafted polymers were cleaved from the protein by adding 200 μ L of the reaction mixture to 200 μ L of 5% KOH solution. The resulting solution was allowed to react for 2 h at room temperature, followed by GPC analysis, as described elsewhere.³

Results

Fig. S1 (a) Kinetic plots of conversion and $\ln[M]_0/[M]$ *vs.* time; (b) plot of number-average molecular weights $(M_{n,GPC})$ and D (M_w/M_n) *vs.* conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c) GPC traces *vs.* time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Na_2S_2O_4]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/1/0.05/0.4$; $[NaCl]_0 = 100$ mM; $[OEOA_{480}]_0/[Water] = 1/3$.

Fig. S2 (a and d) Kinetic plots of conversion and $\ln[M]_0/[M]$ vs. time; (b and e) plot of $M_{n,GPC}$ and \mathcal{D} (M_w/M_n) vs. conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c and f) GPC traces vs. time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/0.05/0.4$; $FR(Na_2S_2O_4) = 16$ (a, b and c) and 32 (d, e and f) nmol/min; $[NaCl]_0 = 100 \text{ mM}$; $[OEOA_{480}]_0/[Water] = 1/3$.

A higher $FR_s = 64$ nmol/min was employed at the beginning of polymerization up to 50% of monomer conversion. After that moment, the FR_s was reduced to 8 nmol/min (Fig. S3).

Fig. S3 (a) Kinetic plots of conversion and $\ln[M]_0/[M]$ vs. time; (b) plot of number-average molecular weights ($M_{n,GPC}$) and D (M_w/M_n) vs. conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c) GPC traces vs. time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/0.05/0.4$; FR(Na₂S₂O₄) = 64 nmol/min (until 4.5h) and FR(Na₂S₂O₄) = 8 nmol/min (until 32h); $[NaCl]_0 = 100 \text{ mM}$; $[OEOA_{480}]_0/[Water] = 1/3$.

Fig. S4 (a) Kinetic plots of conversion and $\ln[M]_0/[M]$ *vs.* time; (b) plot of $M_{n,GPC}$ and $D(M_w/M_n)$ *vs.* conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c) GPC traces *vs.* time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/0.05/0.1$; $FR(Na_2S_2O_4) = 64$ nmol/min; $[NaCl]_0 = 100$ mM; $[OEOA_{480}]_0/[Water] = 1/3$.

Fig. S5 (a) Kinetic plots of conversion and $\ln[M]_0/[M]$ vs. time; (b) plot of $M_{n,GPC}$ and $D(M_w/M_n)$ vs. conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c) GPC traces vs. time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[Me_6TREN]_0 = 250/1/0.05/0.4$; $FR(Na_2S_2O_4) = 64$ nmol/min; $[NaCl]_0 = 100$ mM; $[OEOA_{480}]_0/[Water] = 1/3$.

Fig. S6 (a, d, g and j) Kinetic plots of conversion and $\ln[M]_0/[M]$ vs. time; (b, e, h and k) plot of $M_{n,GPC}$ and D (M_w/M_n) vs. conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c, f, i and l) GPC traces vs. time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/0.05/0.4;$ FR(Na₂S₂O₄) = 64 nmol/min; $[OEOA_{480}]_0/[Water] = 1/3$; (a, b and c) $[TEACI]_0 = 100$ mM, (d, e and f) $[NaBr]_0 = 100$ mM, (g, h and i) $[NaCI]_0 = 10$ mM, and (j, k and l) $[Salt]_0 = 0$ mM.

Fig. S7 (a) Kinetic plots of conversion and $\ln[M]_0/[M]$ vs. time; (b) plot of $M_{n,GPC}$ and $D(M_w/M_n)$ vs. conversion for aqueous SARA ATRP of OEOA₄₈₀ at 30 °C; and (c) GPC traces vs. time. Conditions: $[OEOA_{480}]_0/[HEBiB]_0/[Cu(II)Br_2]_0/[TPMA]_0 = 250/1/0.05/0.1$; $FR(Na_2S_2O_4) = 64$ nmol/min; $[NaCl]_0 = 100$ mM; $[OEOA_{480}]_0/[Water] = 1/3$.

Table S1 Aqueous SARA ATRP of OEOA₄₈₀ with Start/Stop Cycles.

Entry ^a	[M] ₀ /[I] ₀ /[Cu(II)Br ₂] ₀ /[TPMA] ₀	Sulfite	Cu ^ь (ppm)	Time (h)	Conv. (%)	$M_n^{\text{th}} \times 10^{-3}$	$M_{\rm n}^{\rm GPC} imes 10^{-3}$	Ð
1	250/1/0.05/0.4	$Na_2S_2O_4$	26	1 (1 h OFF)	24	28.5	30.6	1.31
				3 (1 h OFF)	44	53.3	48.3	1.25
				5 (1 h OFF)	59	70.7	66.9	1.28
				7 (1 h OFF)	69	83.5	83.9	1.29
				9 (15 h OFF)	76	90.9	90.9	1.29

^{*a*}All polymerizations were conducted with $[M]_0 = 0.5 \text{ M}$, $[I]_0 = 2 \text{ mM}$, $[NaCl]_0 = 100 \text{ mM}$ and $FR_s = 64 \text{ nmol/min}$; ^{*b*}Calculated by the initial weight ratio of Cu to the monomer.

References

- 1. Z. Tyeklar, R. R. Jacobson, N. Wei, N. N. Murthy, J. Zubieta and K. D. Karlin, *J. Am. Chem. Soc.*, 1993, **115**, 2677-2689.
- 2. M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 41-44.
- 3. S. Averick, A. Simakova, S. Park, D. Konkolewicz, A. J. D. Magenau, R. A. Mehl and K. Matyjaszewski, *ACS Macro Lett.*, 2012, **1**, 6-10.