Supporting Information

Self-Reporting Dynamic Covalent Polycarbonates Networks

Alexander M. Schenzel,^a Norbert Moszner^b and Christopher Barner-Kowollik^{*a,c}

^a Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, DE-76128 Karlsruhe, Germany and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. E-mail: christopher.barnerkowollik@kit.edu

^b Ivoclar Vivadent AG, Bendererstr. 2, FL-9494 Schaan, Liechtenstein

^cSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St, QLD 4000, Brisbane, Australia. Email: christopher.barnerkowollik@qut.edu.au

Content

- 1. ¹H NMR spectra of the prepared substances
- 2. ESI mass spectra of HDA-diol and HDA-triol
- 3. SEC analysis of the prepared linear polycarbonates P1 P4
- 4. ¹H NMR spectra of the bonding/debonding behavior of P4

1. ¹H NMR spectra of the prepared substances

Figure S1 ¹H NMR spectrum of PDT-OH in CDCl₃ at ambient temperature.

Figure S2 ¹H NMR spectrum of HDA-diol in DMSO-d6 at ambient temperature.

Figure S3 ¹H NMR spectrum of **HDA-PC** in DMSO-d6 at ambient temperature. a' and b' relate to the hydrogens at the end-functionality of the polymer.

Figure S4 ^1H NMR spectrum of TriBr-linker in CDCl3 at ambient temperature.

Figure S5 1 H NMR spectrum of TriCp-linker in CDCl₃ at ambient temperature.

Figure S6 1 H NMR spectrum of HDA-triol in CDCl₃ at ambient temperature.

2. ESI mass spectra of the HDA-diol and HDA-triol

Figure S7 ESI mass spectrum of the HDA-diol. The retro HDA products are formed during the ionization process due to the high temperatures (320 °C).

Tabel S1 Sum formula, the exact masses of the experimentally obtained data, theoretical m/z values and the deviation of
both for the HDA-diol and the products of the retro HDA reaction (rHDA1 and rHDA2).

Label	Sum formula	m/z _{exp}	m/z _{theo}	Δm/z
[HDA-diol+Na] ⁺	$[C_{50}H_{72}NaO_{12}P_2S_4]^+$	1077.3289	1077.3274	0.0015
[rHDA1+Na]⁺	$[C_{15}H_{21}NaO_6PS_2]^+$	415.0414	415.0409	0.0005
[rHDA2+Na]⁺	$[C_{35}H_{51}NaO_6PS_2]^+$	685.7277	685.7257	0.0020

Figure S8 ESI mass spectrum of the HDA-triol. The retro HDA products are formed during the ionization process due to the high temperatures (320 °C).

Tabel S2 Sum formula, the exact masses of the experimentally obtained data, theoretical m/z values and the deviation of both for the **HDA-triol** and the products of the retro HDA reaction (rHDA1, rHDA2 and rHDA3).

		•	, , ,	
Label	Sum formula	m/z _{exp}	m/z _{theo}	∆m/z
[HDA-triol+Na] ⁺	$[C_{78}H_{99}NaO_{24}P_{3}S_{6}]^{+}$	1727.4114	1727.3956	0.0158
[rHDA1+Na]⁺	$[C_{15}H_{21}NaO_6PS_2]^+$	415.0411	415.0409	0.0002
[rHDA2+Na]⁺	$[C_{48}H_{57}NaO_{12}PS_2]^+$	943.2940	943.2921	0.0019
[rHDA3+Na]⁺	$[C_{63}H_{78}NaO_{18}P_2S_4]^+$	1335.3455	1335.3438	0.0017

3. SEC analysis of the prepared linear polycarbonates (HDA-PC) P1 – P4

Fable S3 SEC analysis of the prepared linear polycarbonates $P1 - P4$. M_n and M_w in g mol ⁻¹ .				
	<i>M</i> n	Mw	Ð	
P1	3.100	4.200	1.4	
P2	2.800	5.600	2.0	
Р3	7.500	16.000	2.4	
P4	7.600	20.000	2.7	

Table S4 SEC analysis of the degradation of P4 upon heating. M_n and M_w in g mol⁻¹.

		-	
	Mn	Mw	Ð
P4 (25 °C)	7.600	20.000	2.7
P4 (60 °C)	3.600	12.000	3.4
P4 (100 °C)	1.600	3.900	2.5
P4 (140 °C)	570	590	1.04

Table S5 SEC analysis of the bonding/debonding behavior of P4. M_n and M_w in g mol⁻¹. P4_{or} is the original P4 polymer, P4_{deg}, the degraded polymer at 120 °C and P4_{ref}, the reformed polymer upon cooling.

		1, 1, 0	
	M n	Mw	Ð
P4 _{or.} (25 °C	7.600	20.000	2.7
P4 _{deg.} (120 °C)	1.300	1.700	1.4
P4 _{ref.} (25 °C)	9.900	20.000	2.0

4. ¹H NMR spectra of the bonding/debonding behavior if P4

Figure S9 ¹H NMR spectra of the bonding/debonding behavior of the prepared linear polycarbonate P4 in DMSO- d_6 .