Supplementary Materials

Well-defined Podophyllotoxin Polyprodrug Brush: Preparation via RAFT Polymerization and Evaluation as Drug Carrier

Yifei Guo,[†] Chunying Hao,[†] Xiangkang Wang,[‡] Yanna Zhao,[†] Meihua Han,[†] Mincan Wang,^{*,‡} Xiangtao Wang^{*,†}

 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China

[‡] The College of Chemistry and Molecular Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, Henan 450052, P. R. China

E-mail: xtaowang@163.com; Fax: +86 10 57833266; Tel: +86 10 57833264

Figure S1. ¹H NMR spectrum of chain transfer agent CTA.

Figure S2. ¹H NMR spectrum of podophyllotoxin methacrylate monomer.

Figure S3. ¹H NMR spectrum of triethylene glycol methacrylate monomer.

Figure S4. ¹H NMR spectrum of poly(triethylene glycol methacrylate).

Figure S5. ¹H NMR spectrum of polyprodrug brush PT₃₅P₂.

Figure S6. ¹H NMR spectrum of polyprodrug brush PT₃₅P₆.

Figure S7. ¹H NMR spectrum of polyprodrug brush PT₃₅P₂₂.

Figure S8. ¹H NMR spectrum of polyprodrug brush PT₃₅P₃₉.

Figure S9. DLS curves of polyprodrug brushes in aqueous solution.

Table S1. Conditions for and results of a series of polyprodrug brush PTP

Entries	DP a	r ^b	Conv. ^c	Mn, _{theor.} d
			(%)	(×10 ⁻⁴)
PT ₃₅	45 ^e	-	45	1.11
PT ₃₅ P ₂	3 ^f	1:0.1	60	1.25
PT ₃₅ P ₆	8	1:0.2	80	1.50
PT ₃₅ P ₁₁	14	1:0.3	56	1.78
PT ₃₅ P ₂₂	28	1:0.5	56	2.46
PT ₃₅ P ₃₉	50	1:1.0	53	3.52

^a Degree of polymerization. ^b Block ratios, calculated from DP. ^c Convesion. ^d Theoretical molar mass.