Supporting Information

Self-assembled peptide mimetic of a tubular host and supramolecular

polymer

Arpita Paikar, Apurba Pramanik, Tanmay Das and Debasish Haldar*

Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741252, India, E-mail: deba_h76@yahoo.com; deba_h76@iiserkol.ac.in

Table of contents

Table 1	2
Table 2	2
Figure S1	2 3
Figure S2	
Figure S3	4
Figure S4	4
Figure S5	5
Table 3	5
Figure S6	6
Figure S7	7
Figure S8	8
Figure S9	9
Figure S10	9
Figure S11	10
Figure S12	10
Figure S13	10
Figure S14	11
Figure S15	11
Figure S16	12
Figure S17	12
Figure S18	13
Figure S19	13
Figure S20	14
Figure S21	14
Figure S22	15 15
Figure S23 Figure S24	15
Figure S25	10
Figure S26	18
Figure S27	19
Figure S28	20
Figure S29	20
Figure S30	21
Figure S31	22
Figure S32	23
Figure S33	24
Figure S34	24
Figure S35	25
	-•

Table 1. Selected backbone torsion angles (deg) for peptide 1

	φ ₁ /°	ψ ₁ /°	φ ₂ /°	ψ ₂ /°	φ ₃ /°	ψ ₃ /°
Peptide 1	51.73(5)	37.20(4)	53.99(4)	34.05(5))-	123.61(4)	150.14(3)

Table 2. Hydrogen bonding parameters of peptide 1^a

D-HA DH(Å) HA(Å) N1-H1O5 a 0.88 2.19 N2-H2O4a 0.88 2.07 N3-H3O2 0.88 2.17 O5-H5O3 0.84 2.05	.) DA(Å) D-HA (°) 3.057(5) 167 2.891(5) 154 2.896(5) 140 2.817(4) 151
---	---

^aSymmetry equivalent a: y, 1-x+y,1/6+z.

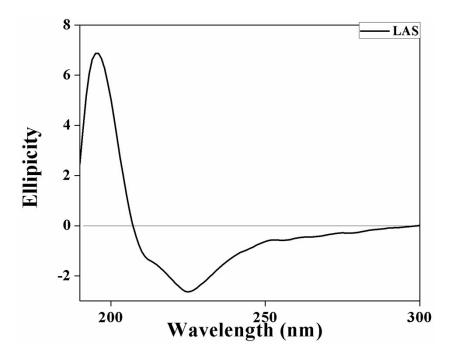
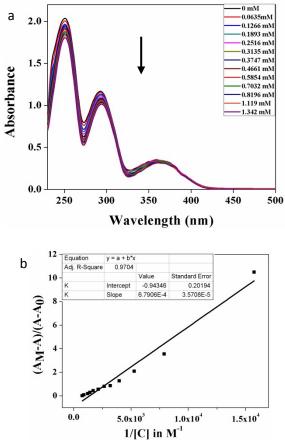



Figure S1. The CD spectra of peptide 1. In MeOH solution peptide 1 selfassembled to form β -turn like conformation. The Peptide concentration was 1.025X10⁻⁶ (M).

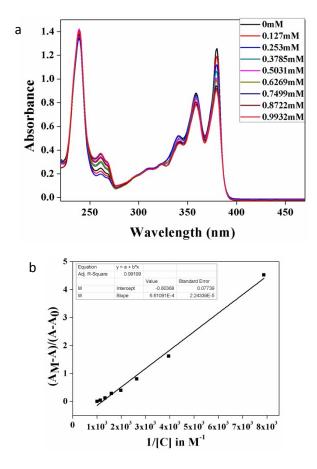
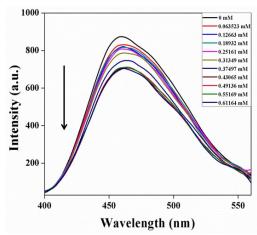


Figure S2: (a) UV-vis study of Coumarin derivative **2** with gradual addition of peptide **1**. (b) Bensi-Hildebrand plot.

The binding constant of peptide 1 and coumarin derivative **2** has calculated using the Bensi-Hildebrand equation where the conc of coumarin derivative **2** keep fixed i.e 1.065×10^{-5} M and peptide **1** added gradually to it. The reverse cannot be done as our peptide is not uv active. The absorbance gradually decreases by adding peptide. Here is the equation witten below. $1/(A-A_0)=1/(A_M-A_0)+1/(A_M-A_0)$ 1/[C] 1/K


$$1/(A-A_0)=1/(A_M-A_0)+1/(A_M-A_0).1/[C].1/K$$

where A_0 = absorbance of coumarin derivative 2 in absence peptide, A = absorbance of coumarin derivative 2 in presence peptide, A_M = maximum absorbance in presence of peptide 1, [C] = concentration of peptide 1, K = binding constant. Plot of $(A_M-A)/(A-A_0)$ vs 1/[C] gives a straight with slope 6.7906x10⁻⁴ i.e. 1/K. So the binding const is 0.1473x10⁴ M⁻¹.

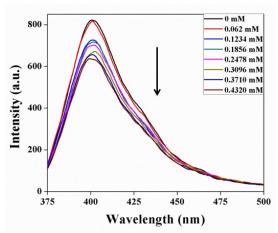


Figure S3: (a) UV-vis study of naphthaline diimide **3** with gradual addition of Peptide **1**. (b) Bensi-Hildebrand Plot.

For Bensi-Hildebrand plot, the concentration of NDI derivative **3** keep fixed i.e 2.41×10^{-5} M and peptide **1** added gradually to it. Plot of $(A_M-A)/(A-A_0)$ vs 1/[C] gives a straight line with slope 6.6109×10^{-4} i.e. 1/K. So the binding const is 0.1512×10^{4} M⁻¹.

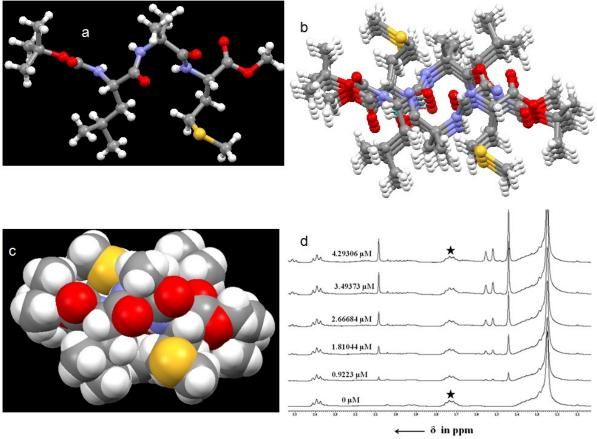


Figure S4: Fluorescence spectra of Coumarin derivative **2** with gradual addition of peptide **1**. Excitation at 290 nm.

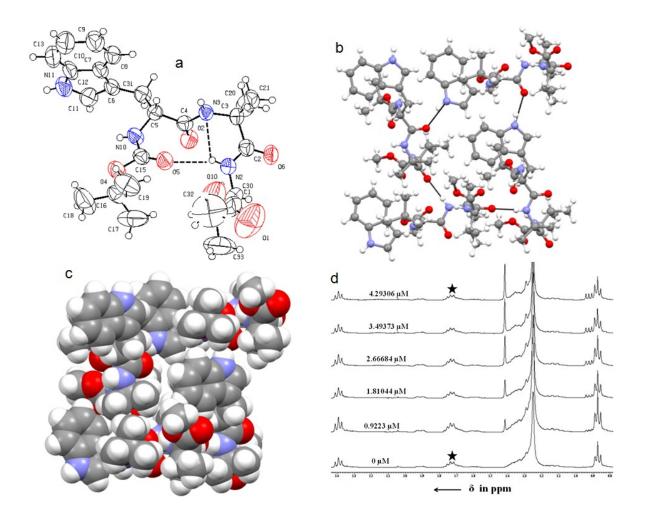
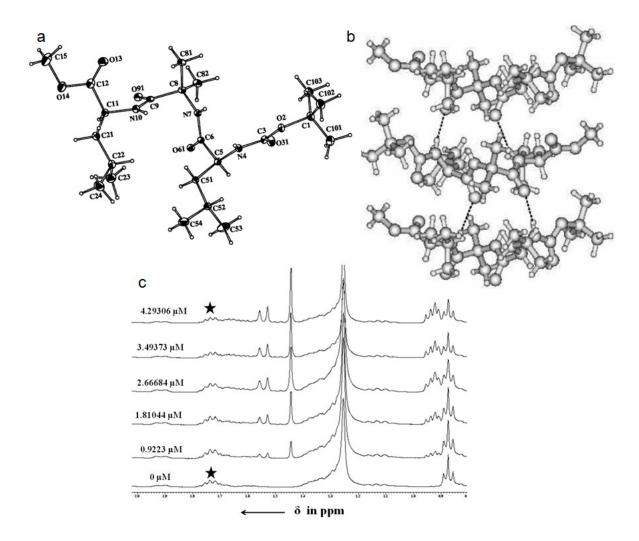


Figure S5: Fluorescence spectra of naphthaline diimide **3** with gradual addition of Peptide **1**. Excitation at 360 nm.


DMSO- <i>d</i> ₆ Volume added (µl)	Ser- NH	Aib-NH	Leu-NH	ОН
0	7.0615	6.7218	5.0262	4.573
5	7.0768	6.8192	5.0902	4.5711
10	7.10065	6.9852	5.2008	4.5628
15	7.1102	7.1779	5.3287	4.5396
20	7.11115	7.2314	5.3740	4.5315
25	7.10735	7.2944	5.4337	4.5138
30	7.1045	7.3211	5.4690	4.5014
35	7.094	7.3363	5.4909	4.4795
40	7.0844	7.3535	5.5138	4.4623
	Proton		Δδ	
	Ser N	H	0.0229	
	Aib NH		0.6317	
	Leu N	H	0.4876	
	ОН		0.1107	

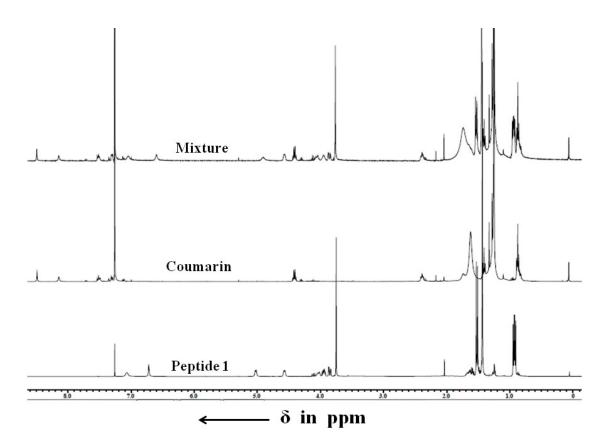

Figure S6: (a) the solid state conformation of Boc-Leu-Aib-Met-OMe showing non beta turn structure (CCDC number 1453988). (b) The ball and stick model showing higher order self-assembly of Boc-Leu-Aib-Met-OMe. (c) The space fill model showing non tubular assembly in higher order. (d) Part of ¹H NMR spectra of coumarin derivative **2** with increasing amount of peptide Boc-Leu-Aib-Met-OMe in CDCl₃.

Figure S7: (a) the solid state conformation of Boc-Trp-Aib-Val-OMe showing beta turn structure (CCDC number 1426948). (b) The ball and stick model showing higher order cage like assembly of Boc-Trp-Aib-Val-OMe. (c) The space fill model showing cage like assembly in higher order. (d) Part of ¹H NMR spectra of coumarin derivative **2** with increasing amount of peptide Boc-Trp-Aib-Val-OMe in CDCl₃.

Figure S8: (a) the solid state conformation of Boc-Leu-Aib-Leu-OMe showing non beta turn structure (CCDC number 208708). (b) The ball and stick model showing higher order self-assembly of Boc-Leu-Aib-Leu-OMe. (c) Part of ¹H NMR spectra of coumarin derivative **2** with increasing amount of peptide Boc-Leu-Aib-Leu-OMe in CDCl₃.

Figure S9: ¹H NMR spectra of mixed crystals obtained from peptide **1** and coumarin derivative **2** showing the existence of both the components.

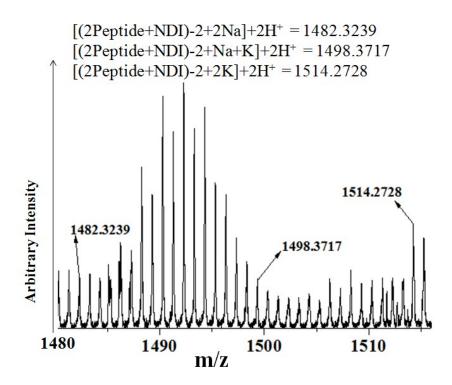
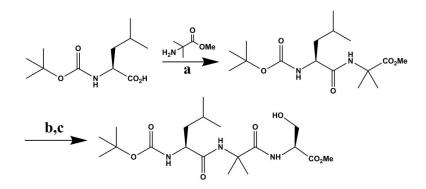



Figure S10: Mass spectrum of the fiber obtained from peptide 1 and diimide 3.

Reagents and conditions: (a) Dry DCM, H-Aib-OMe, DCC, HOBt, 0°C, 77.8% yield; (b) MeOH, 2M NaOH, 86.8% yield; (c) Dry DCM, H-Ser-OMe, DCC, HOBt, 0°C, 78.89% yield.

Figure S11: Schematic presentation of synthesis of tripeptide 1

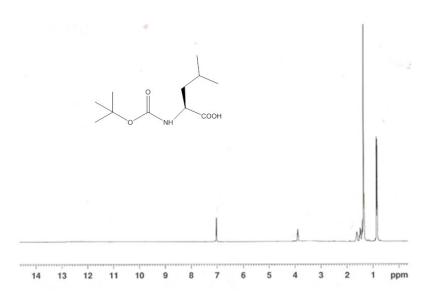
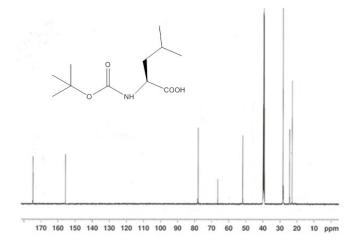



Figure S12: ¹H NMR (DMSO- d_6 , 500 MHz, δ in ppm) spectra of Boc-Leu-OH

Figure S13: ¹³C NMR (DMSO- d_6 , 125 MHz, δ in ppm) spectra of Boc-Leu-OH.

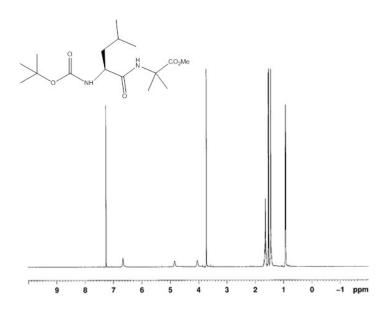


Figure S14: ¹H NMR (CDCl₃, 500 MHz, δ in ppm) spectra of Boc-Leu-Aib-OMe

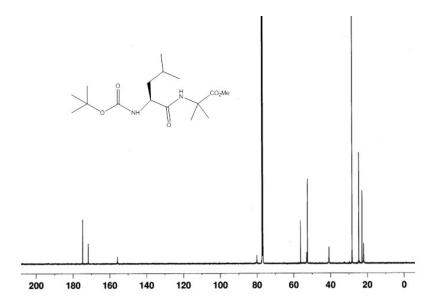


Figure S15: ¹³C NMR (CDCl₃, 125 MHz, δ in ppm) spectra of Boc-Leu-Aib-OMe



Figure S16: ¹H NMR (DMSO- d_6 , 500 MHz, δ in ppm) spectra of Boc-Leu-Aib-OH

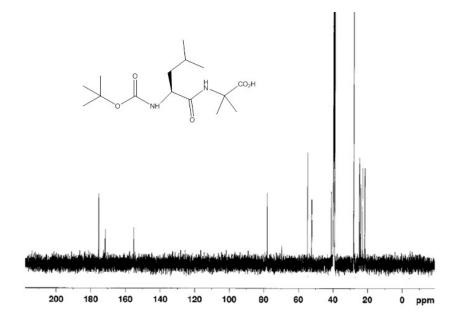


Figure S17: ¹³C NMR (DMSO- d_6 , 125 MHz, δ in ppm) spectra of Boc-Leu-Aib-OH

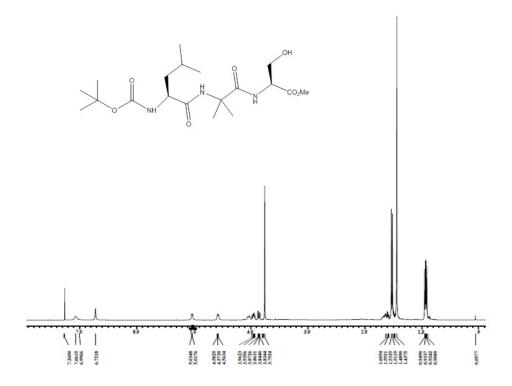
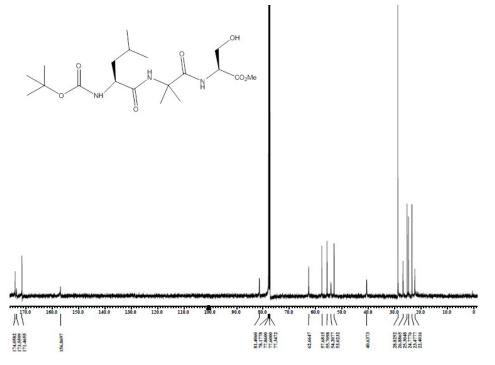



Figure S18: ¹H NMR (CDCl₃, 500 MHz, δ in ppm) spectra of Boc-Leu-Aib-Ser-OMe

Figure S19: ¹³C NMR (CDCl₃, 125 MHz, δ in ppm) spectra of Boc-Leu-Aib-Ser-OMe

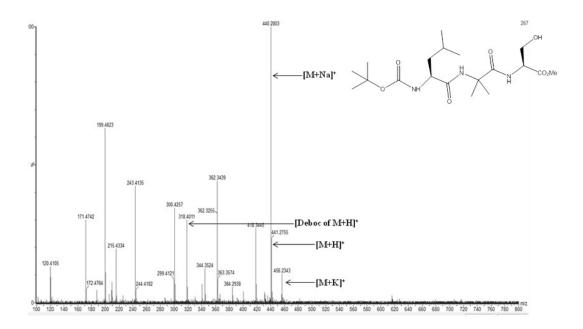


Figure S20: Mass specta of Boc-Leu-Aib-Ser-OMe

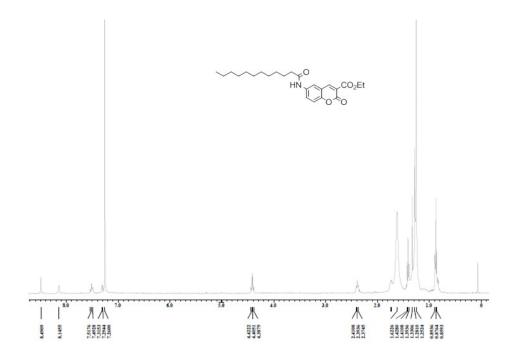


Figure S21: ¹H NMR (CDCI₃, 500 MHz, δ in ppm) spectra of Coumarin Derivative

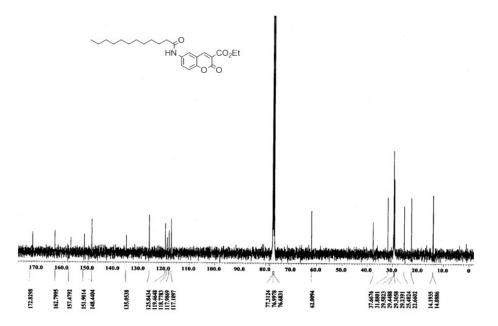
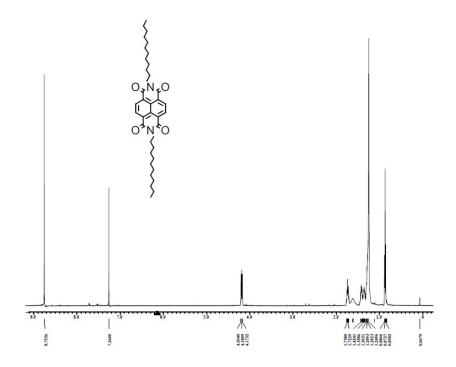



Figure S22: ¹³C NMR (CDCI₃, 125 MHz, δ in ppm) spectra of Coumarin Derivative

Figure S23: ¹H NMR (CDCl₃, 500 MHz, δ in ppm) spectra of naphthaline diimide **3**.

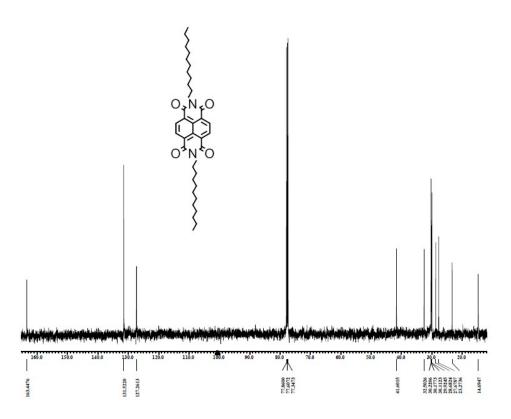


Figure S24: ¹³C NMR (CDCl₃, 125 MHz, δ in ppm) spectra of naphthaline diimide 3

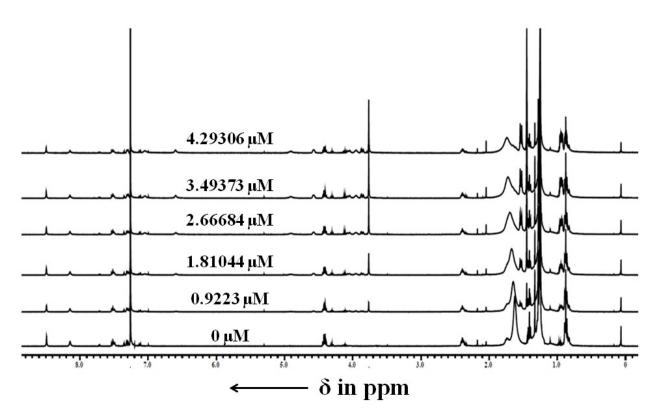
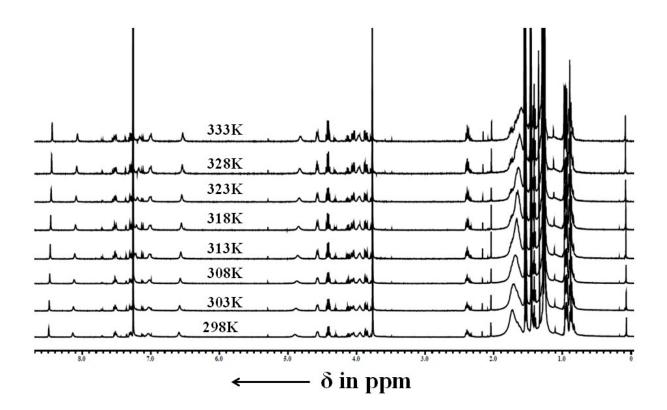
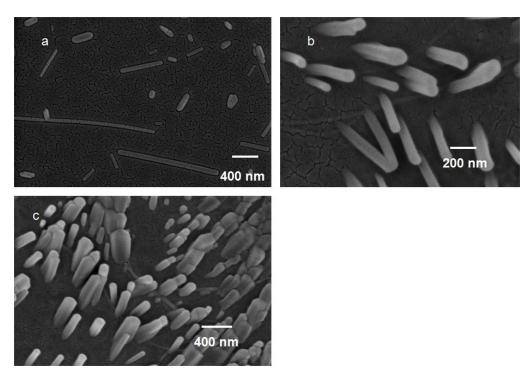
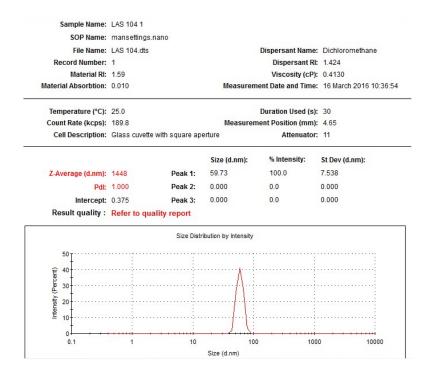
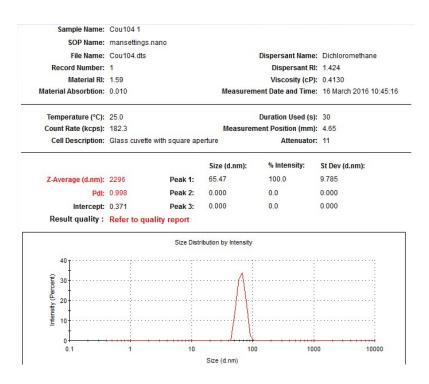


Figure S25: Plot of ¹H NMR spectra of coumarin derivative 2 with increasing amount of peptide 1 in $CDCI_3$.


Figure S26: Plot of the variable temperature ¹H NMR spectra of coumarin derivative 2 and peptide $1(4.29 \ \mu M)$ in CDCI_{3.}

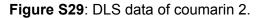


Figure S27: (a) FE-SEM image of peptide **1** showing unbranched polydisperse modular nanotubes morphology. (b) and (c) The unbranched polydisperse columnar morphology of peptide **1** and coumarin derivative **2** mixture.

Figure S28: DLS data of peptide 1.

Sample Name:	NDI 104 1					
SOP Name:	mansettings.na	no				
File Name:	NDI 104.dts			Dispersant Name	: Dichloromethane	
Record Number:	1			Dispersant R	l: 1.424	
Material RI:	1.59			Viscosity (cP)	0.4130	
Material Absorbtion:	0.010		Measurem	ent Date and Time	16 March 2016 10:53:11	
Temperature (°C):	25.0			Duration Used (s)): 30	
Count Rate (kcps):	265.9		Measurem	ent Position (mm)	4.65	
Cell Description:	Glass cuvette with square aperture Attenuator		r: 11			
			Size (d.nm):	% Intensity:	St Dev (d.nm):	
Z-Average (d.nm):	1435	Peak 1:	209.6	100.0	34.89	
Pdl:	0.632	Peak 2:	0.000	0.0	0.000	
	0.464	Peak 3:	0.000	0.0	0.000	
Intercept:						

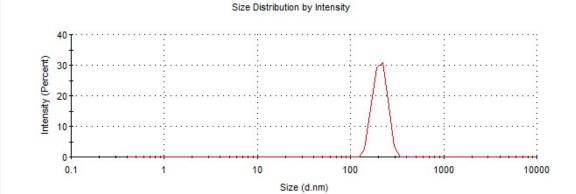


Figure S30: DLS data of diimide 3.

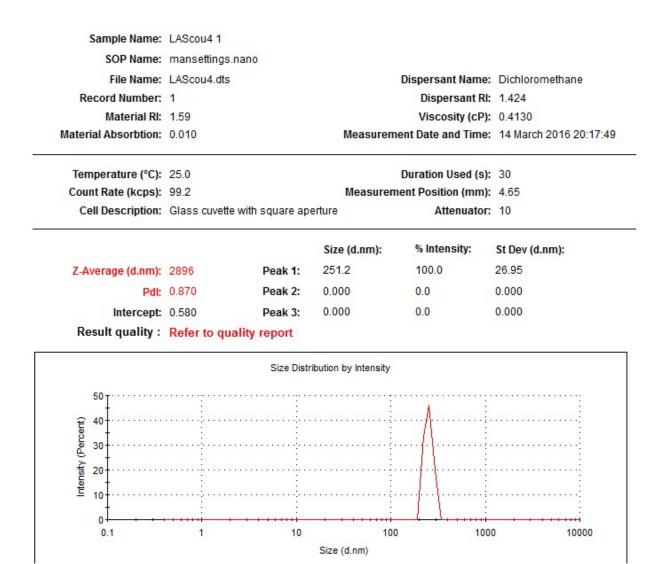
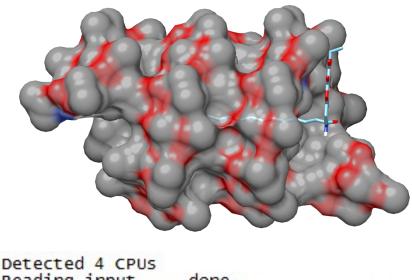



Figure S31: DLS data of mixture of peptide 1 and coumarin 2.

Reading input ... done. Setting up the scoring function ... done. Analyzing the binding site ... done. Using random seed: -764819232 Performing search ... done. Refining results ... done. mode | affinity | dist from best mode | (kcal/mol) | rmsd l.b.| rmsd u.b.

-9.9 3.586

4.649

3

Figure S32: The docking study of peptide 1 supramolecular tube and coumarin 2.

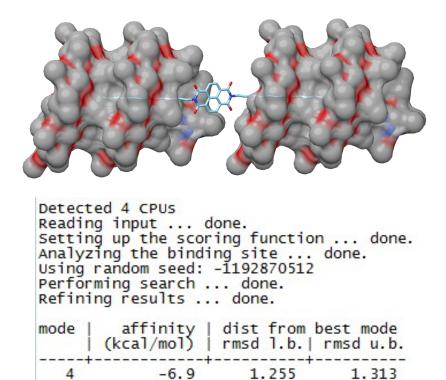


Figure S33: The docking study of peptide 1 supramolecular tube and diimide 3.

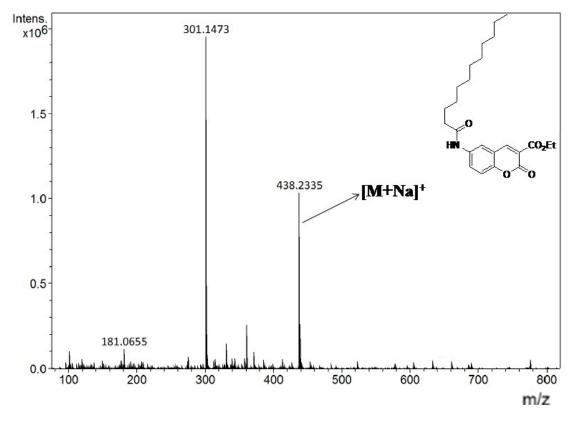


Figure S34: The mass data of coumarin 2.

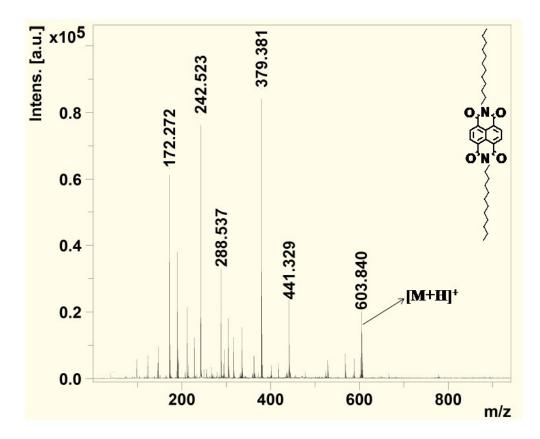


Figure S35: The mass data of diimide 3.