Supporting Information for

Oxygen and Carbon Dioxide Dual Gas-Responsive Homopolymers and Diblock Copolymers Synthesized by RAFT Polymerization

Xue Jiang,¹ Feng Chun,^{1,2,*} Guolin Lu,¹ Huang Xiaoyu^{1,*}

 ¹ Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China

² State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China

* To whom correspondence should be addressed, E-mail: cfeng@mail.sioc.ac.cn (Tel: +86-21-54925606, Fax: +86-21-64166128), xyhuang@mail.sioc.ac.cn (Tel: +86-21-54925310, Fax: +86-21-64166128).

Figure S1. ¹H (A), ¹³C (B), and ¹⁹F (C) NMR spectra of TF-DEAE in CDCl₃.

Figure S2. ¹H NMR spectrum of PEG-CTA in CDCl₃.

Figure S3. (A) Titration curves of PEG-*b*-poly(TF-DEAE-AM) **4b** diblock copolymer (1.0 mg/mL) at 25°C in 10 mM NaCl; (B) Profile of dependence of protonation on pH. We prepared the polymer solution at pH = 3.0 while the solution contained H⁺, Na⁺, OH⁻, Cl⁻, and protonated DEAE macro-ions. With the addition of

NaOH, the concentration of H⁺ decreased and the concentration of Na⁺ ion increased (region 1). The conductivity of polymer solution decreased to the first transition point (a) while pH displayed a sharp rising because the mobility of H⁺ ($\lambda_{H+} = 350$ S cm²/mol) is much larger than that of Na⁺ ($\lambda_{Na+} = 50.5$ S cm²/mol). Region 2 corresponded to the deprotonation of NH⁺(C₂H₅)₂ groups with the continual addition of base as pH climbed slowly. The progressively increased conductivity indicated the increase of the concentration of Na⁺. The deprotonation process ended at the second transition point (b), and beyond this point pH and conductivity continually increased with the addition of base in region 3. As a result, points "a" and "b" represented the starting and ending point of the deprotonation process of the protonated DEAE macro-ions.