Supporting information for

Chiral Anion Triggered Helical Poly(Ionic Liquids)

Nellepalli Pothanagandhi, Akella Sivaramakrishna, Kari Vijayakrishna*

Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu,

India

Spectral data for the synthesized PILs:

Poly-1-vinyl-3-ethylimidazolium bromide: White solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.40 (3H, bs, N-CH₂CH₃), 2.42 (2H, bs, N-CHCH₂), 4.07 (3H, bs, N-CH₂CH₃, N-CHCH₂), 7.45 (3H, bs, CHCH-N-CH-N).

Poly-1-vinyl-3-ethylimidazolium hydroxide: Brownish solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.31 (3H, bs, N-CH₂CH₃), 2.39 (2H, bs, N-CHCH₂), 4.08 (3H, bs, N-CH₂CH₃, N-CHCH₂).

Poly-1-vinyl-3-ethylimidazolium-L-proline: Brownish solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.34 (3H, bs, N-CH₂C<u>H₃</u>), 1.77 (4H, m, C<u>H₂CH₂H</u>), 2.42 (2H, bs, N-CHC<u>H₂</u>), 2.91 (1H, m, C<u>H</u>H), 3.13 (1H, m, C<u>H</u>NH), 3.68 (1H, m, C<u>H</u>-COO), 4.06 (3H, bs, N-C<u>H₂CH₃, N-C<u>H</u>CH₂), 7.43 (3H, bs, C<u>HCH-</u>N-C<u>H</u>-N).</u>

Poly-1-vinyl-3-ethylimidazolium-D-proline: Brownish solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.35 (3H, bs, N-CH₂C<u>H₃</u>), 1.82 (4H, m, C<u>H₂CH₂</u>H), 2.41 (2H, bs, N-CHC<u>H₂</u>), 3.04 (1H, m, C<u>H</u>H), 3.19 (1H, m, C<u>H</u>NH), 3.80 (1H, m, C<u>H</u>-COO), 4.06 (3H, bs, N-C<u>H₂CH₃, N-C<u>H</u>CH₂), 7.43 (3H, bs, C<u>HCH-</u>N-C<u>H</u>-N).</u>

Poly-1-vinyl-3-ethylimidazolium-L-histidine: Brownish solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.38 (3H, bs, N-CH₂C<u>H₃</u>), 2.57 (2H, N-CHC<u>H₂</u>), 2.80 (1H, s, C<u>H</u>HC), 2.95 (1H, s, C<u>H</u>HC), 3.47 (1H, s, C<u>H</u>NH₂), 4.13 (3H, bs, N-C<u>H₂CH₃, N-C<u>H</u>CH₂), 6.89 (1H, s, C=C<u>H</u>), 7.48 (3H, bs, C<u>HCH-N-CH-N</u>), 8.43 (1H, s, N-CH-N).</u>

Poly-1-vinyl-3-ethylimidazolium-D-histidine: Brownish solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.40 (3H, bs, N-CH₂C<u>H₃</u>), 2.57 (2H, N-CHC<u>H₂</u>), 2.78 (1H, s, C<u>H</u>HC), 2.91 (1H, s, C<u>H</u>HC), 3.46 (1H, s, C<u>H</u>NH₂), 4.12 (3H, bs, N-C<u>H₂CH₃, N-C<u>H</u>CH₂), 6.88 (1H, s, C=C<u>H</u>), 7.48 (3H, bs, C<u>HCH</u>-N-C<u>H</u>-N), 8.42 (1H, s, N-C<u>H</u>-N).</u>

Polydiallyldimethylammonium hydroxide: White solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.18 (2H, bd, CHC<u>H₂</u>), 1.41 (2H, bd, CHC<u>H₂</u>), 2.58 (2H, bs, C<u>H</u>CH₂), 3.01 (2H, bs, N-CH₂), 3.07 (6H, m, N-(CH₃)₂), 3.69 (2H, bs, N-CH₂).

PolydiallyIdimethylammonium-L-proline: White solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.28 (4H, bd, CHC<u>H₂</u>), 1.67 (3H, bs, C<u>H₂CH</u>H), 2.05 (1H, bs, CH₂CH<u>H</u>), 2.70 (2H, bs, C<u>H</u>CH₂), 2.96 (1H, bs, C<u>H</u>NH), 3.18 (6H, m, N-(CH₃)₂), 3.41 (1H, bs, C<u>H</u>-COO) 3.80 (4H, bs, N-CH₂).

PolydiallyIdimethylammonium-D-proline: White solid. ¹H NMR (400 MHz, D₂O) δ_{H} : 1.28 (4H, bd, CHC<u>H₂</u>), 1.50 (3H, bs, C<u>H₂CH</u>H), 2.05 (1H, bs, CH₂CH<u>H</u>), 2.71 (2H, bs, C<u>H</u>CH₂), 2.97 (1H, bs, C<u>H</u>NH), 3.17 (6H, m, N-(CH₃)₂), 3.40 (1H, bs, C<u>H</u>-COO) 3.79 (4H, bs, N-CH₂).

3-[Hydroxy-(4-nitro-phenyl)-methyl]-but-3-en-2-one: Pale yellow solid, m.p. 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 2.34 (3H, t, C \underline{H}_{3}), 3.28 (1H, bs, -O \underline{H}), 5.66 (1H, s, HO-C \underline{H}), 6.01 (1H, s, C-C \underline{H} H), 6.24 (1H, s, C-CH \underline{H}), 7.54 (2H, dd, aromatic ring C \underline{H}), 8.19 (2H, dd, aromatic ring C \underline{H}); ¹³C NMR (100 MHz, CDCl₃) δ_{c} : 200.1, 149.0, 148.9, 147.3, 127.7, 127.2, 123.6, 72.2, 26.3; GC-MS, m/z 221.30 (M⁺). Enantiomers of products were separated by chiral HPLC employing a Chiralpak IC column (Diacel). Conditions: 92.5:7.5 hexanes: isopropanol; Flow rate 0.3 mL/min; 270 nm, For reaction catalyzed with Poly(ViEIm)-L-pr; 61.2 min (major), 66.4 min (minor), For reaction catalyzed with Poly(ViEIm)-D-pr; 61.4 min (minor), 66.8 min (major).

Figure S6. DSC traces of poly(ViEIm)-D-his.

Figure S7. DSC traces of poly(dadma) OH.

Figure S8. DSC traces of poly(dadma)-L-pr.

Figure S12. TGA spectrum of poly(ViEIm)-D-pr.

Figure S19. HPLC spectrum of B-H reaction between MVK and *p*-nitrobenzaldehyde catalyzed by [EMIM]OH/D-proline (Isolated Yield = 29 %, ee < 3)

Entry	Compound	[α] _D ª
1	poly(ViEIm)-Br	In active
2	poly(ViEIm)-OH	In active
3	poly(dadma)-Cl	In active
4	poly(dadma)-OH	In active
5	L-proline	-80.1
6	poly(ViElm)-L-pr	-30.1
7	D-proline	94.1
8	poly(ViEIm)-D-pr	38.1
9	L-histidine	-22.4
10	poly(ViEIm)-L-his	-11.3
11	D-histidine	17.0
12	poly(ViEIm)-D-his	19.6
13	poly(dadma)-L-pr	-116.5
14	poly(dadma)-D-pr	113.9

Table S1. Specific rotation values of amino acids and chiral poly(ionic liquids)

^a All samples were analyzed with 40 mg/ mL in water.